Zaheer786124 commited on
Commit
6555dd1
·
verified ·
1 Parent(s): b90214d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -18
app.py CHANGED
@@ -1,16 +1,10 @@
1
  import streamlit as st
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
 
4
- # Function to split text into smaller chunks
5
- def chunk_text(text, max_length=512):
6
- words = text.split()
7
- for i in range(0, len(words), max_length):
8
- yield " ".join(words[i:i + max_length])
9
-
10
- # Load the Hugging Face model
11
  @st.cache_resource
12
  def load_model():
13
- tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
14
  model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
15
  return tokenizer, model
16
 
@@ -28,17 +22,20 @@ if st.button("Paraphrase"):
28
  if input_text.strip():
29
  with st.spinner("Paraphrasing... Please wait."):
30
  try:
31
- paraphrased_text = ""
32
- for chunk in chunk_text(input_text, max_length=512):
33
- # Prepare input for the model
34
- inputs = tokenizer.encode("paraphrase: " + chunk, return_tensors="pt")
35
-
36
- # Generate paraphrased output
37
- outputs = model.generate(inputs, num_beams=5, temperature=0.7, early_stopping=True)
38
- paraphrased_text += tokenizer.decode(outputs[0], skip_special_tokens=True) + " "
39
 
 
 
 
 
 
 
 
 
40
  st.success("Here is the paraphrased text:")
41
- st.write(paraphrased_text.strip())
42
  except Exception as e:
43
  st.error(f"An error occurred: {e}")
44
  else:
 
1
  import streamlit as st
2
+ from transformers import T5Tokenizer, AutoModelForSeq2SeqLM
3
 
4
+ # Load the Hugging Face model with SentencePiece tokenizer
 
 
 
 
 
 
5
  @st.cache_resource
6
  def load_model():
7
+ tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
8
  model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
9
  return tokenizer, model
10
 
 
22
  if input_text.strip():
23
  with st.spinner("Paraphrasing... Please wait."):
24
  try:
25
+ # Prepare input for the model
26
+ inputs = tokenizer.encode("paraphrase: " + input_text,
27
+ return_tensors="pt")
 
 
 
 
 
28
 
29
+ # Generate paraphrased output
30
+ outputs = model.generate(
31
+ inputs,
32
+ num_beams=5,
33
+ temperature=0.7,
34
+ early_stopping=True
35
+ )
36
+ paraphrased_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
37
  st.success("Here is the paraphrased text:")
38
+ st.write(paraphrased_text)
39
  except Exception as e:
40
  st.error(f"An error occurred: {e}")
41
  else: