Spaces:
Sleeping
Sleeping
File size: 1,320 Bytes
aa5d687 3bf1c23 aa5d687 3bf1c23 aa5d687 3bf1c23 aa5d687 2709f08 aa5d687 2709f08 aa5d687 3bf1c23 2709f08 aa5d687 3bf1c23 2709f08 3bf1c23 2709f08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import streamlit as st
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
# Title of the Streamlit app
st.title("Image and Text Combined in One Message")
# Load the pre-trained BLIP model
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Image upload
uploaded_file = st.file_uploader("Upload a product image (JPG, JPEG, PNG):", type=["jpg", "jpeg", "png"])
if uploaded_file:
# Open and display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Generate the description using BLIP model
st.write("Processing the image...")
# Process the image and generate a detailed description
inputs = processor(images=image, return_tensors="pt")
out = model.generate(**inputs)
# Decode and display the description
generated_description = processor.decode(out[0], skip_special_tokens=True)
# Combine Image and Text in One Message
st.markdown(f"**Generated Product Description:** {generated_description}")
st.markdown(f"**Here is your product image:**")
st.image(image, caption="Generated Product Image", use_column_width=True)
|