Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import T5Tokenizer, AutoModelForSeq2SeqLM
|
3 |
+
|
4 |
+
# Load the Hugging Face model with SentencePiece tokenizer
|
5 |
+
@st.cache_resource
|
6 |
+
def load_model():
|
7 |
+
tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws")
|
9 |
+
return tokenizer, model
|
10 |
+
|
11 |
+
# Load the model and tokenizer
|
12 |
+
tokenizer, model = load_model()
|
13 |
+
|
14 |
+
# Streamlit app interface
|
15 |
+
st.title("Paraphrasing Tool - AI to Human")
|
16 |
+
st.write("Paste your AI-generated text below, and the tool will humanize it:")
|
17 |
+
|
18 |
+
# Input text box
|
19 |
+
input_text = st.text_area("Enter text here (no word limit):")
|
20 |
+
|
21 |
+
if st.button("Paraphrase"):
|
22 |
+
if input_text.strip():
|
23 |
+
with st.spinner("Paraphrasing... Please wait."):
|
24 |
+
try:
|
25 |
+
# Prepare input for the model
|
26 |
+
inputs = tokenizer.encode("paraphrase: " + input_text,
|
27 |
+
return_tensors="pt")
|
28 |
+
|
29 |
+
# Generate paraphrased output
|
30 |
+
outputs = model.generate(
|
31 |
+
inputs,
|
32 |
+
num_beams=5,
|
33 |
+
temperature=0.7,
|
34 |
+
early_stopping=True
|
35 |
+
)
|
36 |
+
paraphrased_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
st.success("Here is the paraphrased text:")
|
38 |
+
st.write(paraphrased_text)
|
39 |
+
except Exception as e:
|
40 |
+
st.error(f"An error occurred: {e}")
|
41 |
+
else:
|
42 |
+
st.error("Please enter some text to paraphrase.")
|