File size: 6,512 Bytes
89c005a
7c43635
 
 
028a336
 
89c005a
7c43635
 
 
028a336
7c43635
 
 
bf5eed8
028a336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c43635
028a336
7c43635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
7e08bc6
7c43635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89c005a
 
 
 
 
 
7c43635
89c005a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c43635
028a336
 
 
 
7c43635
 
9912372
7c43635
 
 
 
 
 
 
89c005a
028a336
 
 
7c43635
7e08bc6
028a336
7e08bc6
028a336
7c43635
89c005a
 
7c43635
 
 
 
 
9912372
7c43635
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# app.py
import gradio as gr
import json
from graphviz import Digraph
import os
from tempfile import NamedTemporaryFile
from sample_data import COMPLEX_SAMPLE_JSON 

def generate_concept_map(json_input: str) -> str:
    """
    Generate concept map from JSON and return as image file
    
    Args:
        json_input (str): JSON describing the concept map structure.
            
            REQUIRED FORMAT EXAMPLE:
            {
                "central_node": "AI",
                "nodes": [
                    {
                        "id": "ml",
                        "label": "Machine Learning",
                        "relationship": "subcategory",
                        "subnodes": [
                            {
                                "id": "dl",
                                "label": "Deep Learning",
                                "relationship": "type",
                                "subnodes": [
                                    {
                                        "id": "cnn",
                                        "label": "CNN",
                                        "relationship": "architecture"
                                    }
                                ]
                            }
                        ]
                    }
                ]
            }
    
    Returns:
        str: Path to generated PNG image file
    """
    try:
        if not json_input.strip():
            return "Error: Empty input"
            
        data = json.loads(json_input)
        
        if 'central_node' not in data or 'nodes' not in data:
            raise ValueError("Missing required fields: central_node or nodes")

        # Create graph
        dot = Digraph(
            name='ConceptMap',
            format='png',
            graph_attr={
                'rankdir': 'TB',
                'splines': 'ortho',
                'bgcolor': 'transparent'
            }
        )
        
        # Central node (ellipse)
        dot.node(
            'central',
            data['central_node'],
            shape='ellipse',
            style='filled',
            fillcolor='#2196F3',
            fontcolor='white',
            fontsize='14'
        )
        
        # Process nodes (rectangles)
        for node in data['nodes']:
            node_id = node.get('id')
            label = node.get('label')
            relationship = node.get('relationship')
            
            # Validate node
            if not all([node_id, label, relationship]):
                raise ValueError(f"Invalid node: {node}")
                
            # Create main node (rectangle)
            dot.node(
                node_id,
                label,
                shape='box',
                style='filled',
                fillcolor='#4CAF50',
                fontcolor='white',
                fontsize='12'
            )
            
            # Connect to central node
            dot.edge(
                'central',
                node_id,
                label=relationship,
                color='#9C27B0',
                fontsize='10'
            )
            
            # Helper function to recursively add subnodes and edges
            def add_subnodes(parent_id, subnodes_list, fill_color, font_size, edge_color, edge_font_size):
                for subnode in subnodes_list:
                    sub_id = subnode.get('id')
                    sub_label = subnode.get('label')
                    sub_rel = subnode.get('relationship')
                    
                    if not all([sub_id, sub_label, sub_rel]):
                        raise ValueError(f"Invalid subnode: {subnode}")
                        
                    dot.node(
                        sub_id,
                        sub_label,
                        shape='box',
                        style='filled',
                        fillcolor=fill_color,
                        fontcolor='white',
                        fontsize=str(font_size)
                    )
                    
                    dot.edge(
                        parent_id,
                        sub_id,
                        label=sub_rel,
                        color=edge_color,
                        fontsize=str(edge_font_size)
                    )
                    
                    # Recursively call for deeper levels
                    if 'subnodes' in subnode:
                        # Slightly adjust colors/sizes for deeper levels if desired
                        # For fixed 2 children per parent, you might keep colors consistent per level or vary them.
                        # Here, I'll slightly adjust font size for consistency with depth.
                        add_subnodes(sub_id, subnode['subnodes'], 
                                     '#FFA726' if font_size > 8 else '#FFCC80', # Lighter orange/yellow for deeper levels
                                     font_size - 1 if font_size > 7 else font_size, 
                                     '#E91E63' if edge_font_size > 7 else '#FF5252', # Reddish for deeper edges
                                     edge_font_size - 1 if edge_font_size > 7 else edge_font_size)
            
            # Start processing subnodes from the first level
            add_subnodes(node_id, node.get('subnodes', []), '#FFA726', 10, '#E91E63', 8)


        # Save to temporary file
        with NamedTemporaryFile(delete=False, suffix='.png') as tmp:
            dot.render(tmp.name, format='png', cleanup=True)
            return tmp.name + '.png'

    except json.JSONDecodeError:
        return "Error: Invalid JSON format"
    except Exception as e:
        return f"Error: {str(e)}"

if __name__ == "__main__":
    demo = gr.Interface(
        fn=generate_concept_map,
        inputs=gr.Textbox(
            value=COMPLEX_SAMPLE_JSON, # ¡Ahora usa el JSON AI simétrico y complejo!
            placeholder="Paste JSON following the documented format",
            label="Structured JSON Input",
            lines=25
        ),
        outputs=gr.Image(
            label="Generated Concept Map",
            type="filepath",
            show_download_button=True
        ),
        title="Advanced Concept Map Generator (Symmetric AI)",
        description="Create symmetric, multi-level concept maps for AI from properly formatted JSON."
    )
    
    demo.launch(
        mcp_server=True,
        share=False,
        server_port=7860,
        server_name="0.0.0.0"
    )