File size: 7,556 Bytes
00ba522
 
 
 
 
3a00e55
 
 
 
ddb42dc
00ba522
 
 
 
 
 
 
 
 
fdd7ae2
00ba522
fdd7ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ba522
 
fdd7ae2
 
 
 
 
 
 
 
 
 
 
00ba522
 
fdd7ae2
 
 
00ba522
 
 
 
 
 
 
3a00e55
 
 
 
 
 
 
 
 
 
 
 
 
 
00ba522
 
 
 
 
 
 
 
e2d8c14
 
 
 
00ba522
 
ddb42dc
e2d8c14
3a00e55
 
 
 
 
 
 
 
 
00ba522
3a00e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ba522
 
3a00e55
00ba522
3a00e55
00ba522
3a00e55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00ba522
 
3a00e55
00ba522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import graphviz
import json
from tempfile import NamedTemporaryFile
import os

# No longer importing add_nodes_and_edges from graph_generator_utils
# as process flow diagrams have a different structure and node addition logic.
# However, we'll re-implement the color gradient logic directly for consistency.

def generate_process_flow_diagram(json_input: str) -> str: # Removed base_color parameter
    """
    Generates a Process Flow Diagram (Flowchart) from JSON input.

    Args:
        json_input (str): A JSON string describing the process flow structure.
                          It must follow the Expected JSON Format Example below.

    Expected JSON Format Example:
    {
      "start_node": "Start Inference Request",
      "nodes": [
        {
          "id": "user_input",
          "label": "Receive User Input (Data)",
          "type": "io"
        },
        {
          "id": "preprocess_data",
          "label": "Preprocess Data",
          "type": "process"
        },
        {
          "id": "validate_data",
          "label": "Validate Data Format/Type",
          "type": "decision"
        },
        {
          "id": "data_valid_yes",
          "label": "Data Valid?",
          "type": "decision"
        },
        {
          "id": "load_model",
          "label": "Load AI Model (if not cached)",
          "type": "process"
        },
        {
          "id": "run_inference",
          "label": "Run AI Model Inference",
          "type": "process"
        },
        {
          "id": "postprocess_output",
          "label": "Postprocess Model Output",
          "type": "process"
        },
        {
          "id": "send_response",
          "label": "Send Response to User",
          "type": "io"
        },
        {
          "id": "log_error",
          "label": "Log Error & Notify User",
          "type": "process"
        },
        {
          "id": "end_inference_process",
          "label": "End Inference Process",
          "type": "end"
        }
      ],
      "connections": [
        {"from": "start_node", "to": "user_input", "label": "Request"},
        {"from": "user_input", "to": "preprocess_data", "label": "Data Received"},
        {"from": "preprocess_data", "to": "validate_data", "label": "Cleaned"},
        {"from": "validate_data", "to": "data_valid_yes", "label": "Check"},
        {"from": "data_valid_yes", "to": "load_model", "label": "Yes"},
        {"from": "data_valid_yes", "to": "log_error", "label": "No"},
        {"from": "load_model", "to": "run_inference", "label": "Model Ready"},
        {"from": "run_inference", "to": "postprocess_output", "label": "Output Generated"},
        {"from": "postprocess_output", "to": "send_response", "label": "Ready"},
        {"from": "send_response", "to": "end_inference_process", "label": "Response Sent"},
        {"from": "log_error", "to": "end_inference_process", "label": "Error Handled"}
      ]
    }

    Returns:
        str: The filepath to the generated PNG image file.
    """
    try:
        if not json_input.strip():
            return "Error: Empty input"
            
        data = json.loads(json_input)
        
        # Validate required top-level keys for a flowchart
        if 'start_node' not in data or 'nodes' not in data or 'connections' not in data:
            raise ValueError("Missing required fields: 'start_node', 'nodes', or 'connections'")

        # Define specific node shapes for flowchart types
        node_shapes = {
            "process": "box",          # Rectangle for processes
            "decision": "diamond",     # Diamond for decisions
            "start": "oval",           # Oval for start
            "end": "oval",             # Oval for end
            "io": "parallelogram",     # Input/Output
            "document": "note",        # Document symbol
            "default": "box"           # Fallback
        }

        dot = graphviz.Digraph(
            name='ProcessFlowDiagram',
            format='png',
            graph_attr={
                'rankdir': 'TB',        # Top-to-Bottom flow is common for flowcharts
                'splines': 'ortho',     # Straight lines with 90-degree bends
                'bgcolor': 'white',     # White background
                'pad': '0.5',           # Padding around the graph
                'nodesep': '0.6',       # Spacing between nodes on same rank
                'ranksep': '0.8'        # Spacing between ranks
            }
        )
        
        base_color = '#19191a' # Hardcoded base color

        # Helper for color and font based on depth (simulated for flowcharts if needed, or consistent color)
        # For flowcharts, often all process/decision nodes are the same color.
        # If a gradient is desired, a 'depth' could be manually assigned or derived.
        # For simplicity and typical flowchart appearance, we'll use a consistent base_color for all nodes.
        fill_color_for_nodes = base_color
        font_color_for_nodes = 'white' if base_color == '#19191a' or base_color.lower() in ['#000000', '#19191a'] else 'black'
        
        # Store all nodes by ID for easy lookup
        all_defined_nodes = {node['id']: node for node in data['nodes']}
        
        # Add start node explicitly
        start_node_id = data['start_node']
        dot.node(
            start_node_id,
            start_node_id, # Label is typically the ID itself for start/end
            shape=node_shapes['start'],
            style='filled,rounded',
            fillcolor='#2196F3', # A distinct blue for Start
            fontcolor='white',
            fontsize='14'
        )

        # Add all other nodes (process, decision, etc.)
        for node_id, node_info in all_defined_nodes.items():
            if node_id == start_node_id: # Skip if it's the start node, already added
                continue

            node_type = node_info.get("type", "default")
            shape = node_shapes.get(node_type, "box")

            node_label = node_info['label']

            # Use distinct color for end node if it exists
            if node_type == 'end':
                 dot.node(
                    node_id,
                    node_label,
                    shape=shape,
                    style='filled,rounded',
                    fillcolor='#F44336', # A distinct red for End
                    fontcolor='white',
                    fontsize='14'
                )
            else: # Regular process, decision, etc. nodes use the selected base color
                dot.node(
                    node_id,
                    node_label,
                    shape=shape,
                    style='filled,rounded',
                    fillcolor=fill_color_for_nodes, 
                    fontcolor=font_color_for_nodes,
                    fontsize='14'
                )

        # Add connections (edges)
        for connection in data['connections']:
            dot.edge(
                connection['from'],
                connection['to'],
                label=connection.get('label', ''),
                color='#4a4a4a', # Dark gray for lines
                fontcolor='#4a4a4a',
                fontsize='10'
            )
        
        # Save to temporary file
        with NamedTemporaryFile(delete=False, suffix='.png') as tmp:
            dot.render(tmp.name, format='png', cleanup=True)
            return tmp.name + '.png'

    except json.JSONDecodeError:
        return "Error: Invalid JSON format"
    except Exception as e:
        return f"Error: {str(e)}"