Create sample_data.py
Browse files- sample_data.py +249 -0
sample_data.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
COMPLEX_SAMPLE_JSON = """
|
2 |
+
{
|
3 |
+
"central_node": "Artificial Intelligence (AI)",
|
4 |
+
"nodes": [
|
5 |
+
{
|
6 |
+
"id": "ml",
|
7 |
+
"label": "Machine Learning (ML)",
|
8 |
+
"relationship": "Core Domain",
|
9 |
+
"subnodes": [
|
10 |
+
{
|
11 |
+
"id": "sl",
|
12 |
+
"label": "Supervised Learning",
|
13 |
+
"relationship": "Learning Paradigm",
|
14 |
+
"subnodes": [
|
15 |
+
{
|
16 |
+
"id": "sl_prob",
|
17 |
+
"label": "Probabilistic Models",
|
18 |
+
"relationship": "Approach Type",
|
19 |
+
"subnodes": [
|
20 |
+
{
|
21 |
+
"id": "nbc",
|
22 |
+
"label": "Naive Bayes Classifier",
|
23 |
+
"relationship": "Algorithm Example",
|
24 |
+
"subnodes": [
|
25 |
+
{"id": "text_class", "label": "Text Classification", "relationship": "Application"},
|
26 |
+
{"id": "spam_det", "label": "Spam Detection", "relationship": "Application"}
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"id": "lda",
|
31 |
+
"label": "Linear Discriminant Analysis",
|
32 |
+
"relationship": "Algorithm Example",
|
33 |
+
"subnodes": [
|
34 |
+
{"id": "dim_red_lda", "label": "Dimensionality Reduction", "relationship": "Use Case"},
|
35 |
+
{"id": "face_recog", "label": "Face Recognition", "relationship": "Use Case"}
|
36 |
+
]
|
37 |
+
}
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"id": "sl_det",
|
42 |
+
"label": "Deterministic Models",
|
43 |
+
"relationship": "Approach Type",
|
44 |
+
"subnodes": [
|
45 |
+
{
|
46 |
+
"id": "svm",
|
47 |
+
"label": "Support Vector Machines (SVM)",
|
48 |
+
"relationship": "Algorithm Example",
|
49 |
+
"subnodes": [
|
50 |
+
{"id": "image_recog", "label": "Image Recognition", "relationship": "Application"},
|
51 |
+
{"id": "bioinfo", "label": "Bioinformatics", "relationship": "Application"}
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"id": "dt",
|
56 |
+
"label": "Decision Trees",
|
57 |
+
"relationship": "Algorithm Example",
|
58 |
+
"subnodes": [
|
59 |
+
{"id": "credit_scoring", "label": "Credit Scoring", "relationship": "Application"},
|
60 |
+
{"id": "medical_diag", "label": "Medical Diagnosis", "relationship": "Application"}
|
61 |
+
]
|
62 |
+
}
|
63 |
+
]
|
64 |
+
}
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"id": "ul",
|
69 |
+
"label": "Unsupervised Learning",
|
70 |
+
"relationship": "Learning Paradigm",
|
71 |
+
"subnodes": [
|
72 |
+
{
|
73 |
+
"id": "clus",
|
74 |
+
"label": "Clustering",
|
75 |
+
"relationship": "Task Type",
|
76 |
+
"subnodes": [
|
77 |
+
{
|
78 |
+
"id": "kmeans",
|
79 |
+
"label": "K-Means Clustering",
|
80 |
+
"relationship": "Algorithm Example",
|
81 |
+
"subnodes": [
|
82 |
+
{"id": "customer_seg", "label": "Customer Segmentation", "relationship": "Application"},
|
83 |
+
{"id": "document_analysis", "label": "Document Analysis", "relationship": "Application"}
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"id": "dbscan",
|
88 |
+
"label": "DBSCAN",
|
89 |
+
"relationship": "Algorithm Example",
|
90 |
+
"subnodes": [
|
91 |
+
{"id": "anomaly_det", "label": "Anomaly Detection", "relationship": "Application"},
|
92 |
+
{"id": "spatial_data", "label": "Spatial Data Analysis", "relationship": "Application"}
|
93 |
+
]
|
94 |
+
}
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"id": "dim_red_ul",
|
99 |
+
"label": "Dimensionality Reduction",
|
100 |
+
"relationship": "Task Type",
|
101 |
+
"subnodes": [
|
102 |
+
{
|
103 |
+
"id": "pca",
|
104 |
+
"label": "Principal Component Analysis (PCA)",
|
105 |
+
"relationship": "Algorithm Example",
|
106 |
+
"subnodes": [
|
107 |
+
{"id": "feature_ext", "label": "Feature Extraction", "relationship": "Use Case"},
|
108 |
+
{"id": "noise_red", "label": "Noise Reduction", "relationship": "Use Case"}
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"id": "tsne",
|
113 |
+
"label": "t-SNE",
|
114 |
+
"relationship": "Algorithm Example",
|
115 |
+
"subnodes": [
|
116 |
+
{"id": "data_viz", "label": "Data Visualization", "relationship": "Application"},
|
117 |
+
{"id": "genomics", "label": "Genomics", "relationship": "Application"}
|
118 |
+
]
|
119 |
+
}
|
120 |
+
]
|
121 |
+
}
|
122 |
+
]
|
123 |
+
}
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"id": "dl",
|
128 |
+
"label": "Deep Learning (DL)",
|
129 |
+
"relationship": "Subfield of ML",
|
130 |
+
"subnodes": [
|
131 |
+
{
|
132 |
+
"id": "cnn",
|
133 |
+
"label": "Convolutional Neural Networks (CNNs)",
|
134 |
+
"relationship": "Architecture Type",
|
135 |
+
"subnodes": [
|
136 |
+
{
|
137 |
+
"id": "img_class",
|
138 |
+
"label": "Image Classification",
|
139 |
+
"relationship": "Primary Use",
|
140 |
+
"subnodes": [
|
141 |
+
{
|
142 |
+
"id": "alexnet",
|
143 |
+
"label": "AlexNet",
|
144 |
+
"relationship": "Historic Model",
|
145 |
+
"subnodes": [
|
146 |
+
{"id": "imagenet", "label": "ImageNet Challenge", "relationship": "Milestone"},
|
147 |
+
{"id": "gpu_accel", "label": "GPU Acceleration", "relationship": "Enabling Factor"}
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"id": "resnet",
|
152 |
+
"label": "ResNet",
|
153 |
+
"relationship": "Advanced Model",
|
154 |
+
"subnodes": [
|
155 |
+
{"id": "residual_con", "label": "Residual Connections", "relationship": "Key Feature"},
|
156 |
+
{"id": "deeper_nets", "label": "Deeper Networks", "relationship": "Benefit"}
|
157 |
+
]
|
158 |
+
}
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"id": "obj_det_cnn",
|
163 |
+
"label": "Object Detection",
|
164 |
+
"relationship": "Primary Use",
|
165 |
+
"subnodes": [
|
166 |
+
{
|
167 |
+
"id": "yolo",
|
168 |
+
"label": "YOLO (You Only Look Once)",
|
169 |
+
"relationship": "Real-time Algorithm",
|
170 |
+
"subnodes": [
|
171 |
+
{"id": "speed", "label": "High Speed", "relationship": "Advantage"},
|
172 |
+
{"id": "single_pass", "label": "Single Pass Detection", "relationship": "Mechanism"}
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"id": "faster_rcnn",
|
177 |
+
"label": "Faster R-CNN",
|
178 |
+
"relationship": "Region-based Algorithm",
|
179 |
+
"subnodes": [
|
180 |
+
{"id": "region_props", "label": "Region Proposals", "relationship": "Mechanism"},
|
181 |
+
{"id": "accuracy", "label": "High Accuracy", "relationship": "Advantage"}
|
182 |
+
]
|
183 |
+
}
|
184 |
+
]
|
185 |
+
}
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"id": "rnn",
|
190 |
+
"label": "Recurrent Neural Networks (RNNs)",
|
191 |
+
"relationship": "Architecture Type",
|
192 |
+
"subnodes": [
|
193 |
+
{
|
194 |
+
"id": "seq_data",
|
195 |
+
"label": "Sequential Data Processing",
|
196 |
+
"relationship": "Primary Use",
|
197 |
+
"subnodes": [
|
198 |
+
{
|
199 |
+
"id": "nlp_rnn",
|
200 |
+
"label": "Natural Language Processing (NLP)",
|
201 |
+
"relationship": "Application Area",
|
202 |
+
"subnodes": [
|
203 |
+
{"id": "text_gen_rnn", "label": "Text Generation", "relationship": "Specific Task"},
|
204 |
+
{"id": "sentiment_rnn", "label": "Sentiment Analysis", "relationship": "Specific Task"}
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"id": "speech_rec",
|
209 |
+
"label": "Speech Recognition",
|
210 |
+
"relationship": "Application Area",
|
211 |
+
"subnodes": [
|
212 |
+
{"id": "voice_assist", "label": "Voice Assistants", "relationship": "Product Example"},
|
213 |
+
{"id": "transcription", "label": "Audio Transcription", "relationship": "Task"}
|
214 |
+
]
|
215 |
+
}
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"id": "advanced_rnn",
|
220 |
+
"label": "Advanced RNN Variants",
|
221 |
+
"relationship": "Improvements",
|
222 |
+
"subnodes": [
|
223 |
+
{
|
224 |
+
"id": "lstm",
|
225 |
+
"label": "Long Short-Term Memory (LSTM)",
|
226 |
+
"relationship": "Variant Type",
|
227 |
+
"subnodes": [
|
228 |
+
{"id": "vanishing_grad", "label": "Solves Vanishing Gradients", "relationship": "Benefit"},
|
229 |
+
{"id": "memory_cells", "label": "Internal Memory Cells", "relationship": "Mechanism"}
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"id": "gru",
|
234 |
+
"label": "Gated Recurrent Unit (GRU)",
|
235 |
+
"relationship": "Variant Type",
|
236 |
+
"subnodes": [
|
237 |
+
{"id": "simpler_than_lstm", "label": "Simpler Architecture", "relationship": "Characteristic"},
|
238 |
+
{"id": "comparable_perf", "label": "Comparable Performance", "relationship": "Characteristic"}
|
239 |
+
]
|
240 |
+
}
|
241 |
+
]
|
242 |
+
}
|
243 |
+
]
|
244 |
+
}
|
245 |
+
]
|
246 |
+
}
|
247 |
+
]
|
248 |
+
}
|
249 |
+
"""
|