Update sample_data.py
Browse files- sample_data.py +141 -4
sample_data.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
{
|
3 |
"central_node": "Artificial Intelligence (AI)",
|
4 |
"nodes": [
|
@@ -130,8 +130,7 @@ COMPLEX_SAMPLE_JSON = """
|
|
130 |
{
|
131 |
"id": "robotics_example",
|
132 |
"label": "Robotics",
|
133 |
-
"relationship": "
|
134 |
-
},
|
135 |
{
|
136 |
"id": "autonomous_example",
|
137 |
"label": "Autonomous Vehicles",
|
@@ -164,4 +163,142 @@ COMPLEX_SAMPLE_JSON = """
|
|
164 |
}
|
165 |
]
|
166 |
}
|
167 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONCEPT_MAP_JSON = """
|
2 |
{
|
3 |
"central_node": "Artificial Intelligence (AI)",
|
4 |
"nodes": [
|
|
|
130 |
{
|
131 |
"id": "robotics_example",
|
132 |
"label": "Robotics",
|
133 |
+
"relationship": "Example"},
|
|
|
134 |
{
|
135 |
"id": "autonomous_example",
|
136 |
"label": "Autonomous Vehicles",
|
|
|
163 |
}
|
164 |
]
|
165 |
}
|
166 |
+
"""
|
167 |
+
|
168 |
+
# JSON for Synoptic Chart (horizontal hierarchy) - AI related, 4 levels
|
169 |
+
SYNOPTIC_CHART_JSON = """
|
170 |
+
{
|
171 |
+
"central_node": "AI Project Lifecycle",
|
172 |
+
"nodes": [
|
173 |
+
{
|
174 |
+
"id": "phase1",
|
175 |
+
"label": "I. Problem Definition & Data Acquisition",
|
176 |
+
"relationship": "Starts with",
|
177 |
+
"subnodes": [
|
178 |
+
{
|
179 |
+
"id": "sub1_1",
|
180 |
+
"label": "1. Problem Formulation",
|
181 |
+
"relationship": "Involves",
|
182 |
+
"subnodes": [
|
183 |
+
{"id": "sub1_1_1", "label": "1.1. Identify Business Need", "relationship": "e.g."},
|
184 |
+
{"id": "sub1_1_2", "label": "1.2. Define KPIs", "relationship": "e.g."}
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"id": "sub1_2",
|
189 |
+
"label": "2. Data Collection",
|
190 |
+
"relationship": "Followed by",
|
191 |
+
"subnodes": [
|
192 |
+
{"id": "sub1_2_1", "label": "2.1. Source Data", "relationship": "from"},
|
193 |
+
{"id": "sub1_2_2", "label": "2.2. Data Cleaning", "relationship": "includes"}
|
194 |
+
]
|
195 |
+
}
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"id": "phase2",
|
200 |
+
"label": "II. Model Development",
|
201 |
+
"relationship": "Proceeds to",
|
202 |
+
"subnodes": [
|
203 |
+
{
|
204 |
+
"id": "sub2_1",
|
205 |
+
"label": "1. Feature Engineering",
|
206 |
+
"relationship": "Comprises",
|
207 |
+
"subnodes": [
|
208 |
+
{"id": "sub2_1_1", "label": "1.1. Feature Selection", "relationship": "e.g."},
|
209 |
+
{"id": "sub2_1_2", "label": "1.2. Feature Transformation", "relationship": "e.g."}
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"id": "sub2_2",
|
214 |
+
"label": "2. Model Training",
|
215 |
+
"relationship": "Involves",
|
216 |
+
"subnodes": [
|
217 |
+
{"id": "sub2_2_1", "label": "2.1. Algorithm Selection", "relationship": "uses"},
|
218 |
+
{"id": "sub2_2_2", "label": "2.2. Hyperparameter Tuning", "relationship": "optimizes"}
|
219 |
+
]
|
220 |
+
}
|
221 |
+
]
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"id": "phase3",
|
225 |
+
"label": "III. Evaluation & Deployment",
|
226 |
+
"relationship": "Culminates in",
|
227 |
+
"subnodes": [
|
228 |
+
{
|
229 |
+
"id": "sub3_1",
|
230 |
+
"label": "1. Model Evaluation",
|
231 |
+
"relationship": "Includes",
|
232 |
+
"subnodes": [
|
233 |
+
{"id": "sub3_1_1", "label": "1.1. Performance Metrics", "relationship": "measures"},
|
234 |
+
{"id": "sub3_1_2", "label": "1.2. Bias & Fairness Audits", "relationship": "ensures"}
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"id": "sub3_2",
|
239 |
+
"label": "2. Deployment & Monitoring",
|
240 |
+
"relationship": "Requires",
|
241 |
+
"subnodes": [
|
242 |
+
{"id": "sub3_2_1", "label": "2.1. API/Integration Development", "relationship": "for"},
|
243 |
+
{"id": "sub3_2_2", "label": "2.2. Continuous Monitoring", "relationship": "ensures"}
|
244 |
+
]
|
245 |
+
}
|
246 |
+
]
|
247 |
+
}
|
248 |
+
]
|
249 |
+
}
|
250 |
+
"""
|
251 |
+
|
252 |
+
# JSON for Radial Diagram (central expansion) - AI related, 3 levels with 5->10 structure
|
253 |
+
RADIAL_DIAGRAM_JSON = """
|
254 |
+
{
|
255 |
+
"central_node": "AI Core Concepts & Domains",
|
256 |
+
"nodes": [
|
257 |
+
{
|
258 |
+
"id": "foundational_ml",
|
259 |
+
"label": "Foundational ML",
|
260 |
+
"relationship": "builds on",
|
261 |
+
"subnodes": [
|
262 |
+
{"id": "supervised_l", "label": "Supervised Learning", "relationship": "e.g."},
|
263 |
+
{"id": "unsupervised_l", "label": "Unsupervised Learning", "relationship": "e.g."}
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"id": "dl_architectures",
|
268 |
+
"label": "Deep Learning Arch.",
|
269 |
+
"relationship": "evolved from",
|
270 |
+
"subnodes": [
|
271 |
+
{"id": "cnns_rad", "label": "CNNs", "relationship": "e.g."},
|
272 |
+
{"id": "rnns_rad", "label": "RNNs", "relationship": "e.g."}
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"id": "major_applications",
|
277 |
+
"label": "Major AI Applications",
|
278 |
+
"relationship": "applied in",
|
279 |
+
"subnodes": [
|
280 |
+
{"id": "nlp_rad", "label": "Natural Language Processing", "relationship": "e.g."},
|
281 |
+
{"id": "cv_rad", "label": "Computer Vision", "relationship": "e.g."}
|
282 |
+
]
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"id": "ethical_concerns",
|
286 |
+
"label": "Ethical AI Concerns",
|
287 |
+
"relationship": "addresses",
|
288 |
+
"subnodes": [
|
289 |
+
{"id": "fairness_rad", "label": "Fairness & Bias", "relationship": "e.g."},
|
290 |
+
{"id": "explainability", "label": "Explainability (XAI)", "relationship": "e.g."}
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"id": "future_trends",
|
295 |
+
"label": "Future AI Trends",
|
296 |
+
"relationship": "looking at",
|
297 |
+
"subnodes": [
|
298 |
+
{"id": "agi_future", "label": "AGI Development", "relationship": "e.g."},
|
299 |
+
{"id": "quantum_ai", "label": "Quantum AI", "relationship": "e.g."}
|
300 |
+
]
|
301 |
+
}
|
302 |
+
]
|
303 |
+
}
|
304 |
+
"""
|