Update concept_map_generator.py
Browse files- concept_map_generator.py +12 -136
concept_map_generator.py
CHANGED
@@ -4,13 +4,18 @@ from tempfile import NamedTemporaryFile
|
|
4 |
import os
|
5 |
from graph_generator_utils import add_nodes_and_edges
|
6 |
|
7 |
-
def generate_concept_map(json_input: str) -> str:
|
8 |
"""
|
9 |
Generates a concept map from JSON input.
|
10 |
|
11 |
Args:
|
12 |
json_input (str): A JSON string describing the concept map structure.
|
13 |
It must follow the Expected JSON Format Example below.
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
Expected JSON Format Example:
|
16 |
{
|
@@ -26,33 +31,8 @@ def generate_concept_map(json_input: str) -> str:
|
|
26 |
"label": "Deep Learning",
|
27 |
"relationship": "for example",
|
28 |
"subnodes": [
|
29 |
-
{
|
30 |
-
|
31 |
-
"label": "CNNs",
|
32 |
-
"relationship": "for example"
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"id": "rnn_example",
|
36 |
-
"label": "RNNs",
|
37 |
-
"relationship": "for example"
|
38 |
-
}
|
39 |
-
]
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"id": "rl_branch",
|
43 |
-
"label": "Reinforcement Learning",
|
44 |
-
"relationship": "for example",
|
45 |
-
"subnodes": [
|
46 |
-
{
|
47 |
-
"id": "qlearning_example",
|
48 |
-
"label": "Q-Learning",
|
49 |
-
"relationship": "example"
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"id": "pg_example",
|
53 |
-
"label": "Policy Gradients",
|
54 |
-
"relationship": "example"
|
55 |
-
}
|
56 |
]
|
57 |
}
|
58 |
]
|
@@ -67,119 +47,13 @@ def generate_concept_map(json_input: str) -> str:
|
|
67 |
"label": "AGI",
|
68 |
"relationship": "this is",
|
69 |
"subnodes": [
|
70 |
-
{
|
71 |
-
"id": "strong_ai",
|
72 |
-
"label": "Strong AI",
|
73 |
-
"relationship": "provoked by",
|
74 |
-
"subnodes": [
|
75 |
-
{
|
76 |
-
"id": "human_intel",
|
77 |
-
"label": "Human-level Intel.",
|
78 |
-
"relationship": "of"
|
79 |
-
}
|
80 |
-
]
|
81 |
-
}
|
82 |
-
]
|
83 |
-
},
|
84 |
-
{
|
85 |
-
"id": "ani_type",
|
86 |
-
"label": "ANI",
|
87 |
-
"relationship": "this is",
|
88 |
-
"subnodes": [
|
89 |
-
{
|
90 |
-
"id": "weak_ai",
|
91 |
-
"label": "Weak AI",
|
92 |
-
"relationship": "provoked by",
|
93 |
-
"subnodes": [
|
94 |
-
{
|
95 |
-
"id": "narrow_tasks",
|
96 |
-
"label": "Narrow Tasks",
|
97 |
-
"relationship": "of"
|
98 |
-
}
|
99 |
-
]
|
100 |
-
}
|
101 |
-
]
|
102 |
-
}
|
103 |
-
]
|
104 |
-
},
|
105 |
-
{
|
106 |
-
"id": "ai_capabilities",
|
107 |
-
"label": "Capabilities",
|
108 |
-
"relationship": "change",
|
109 |
-
"subnodes": [
|
110 |
-
{
|
111 |
-
"id": "data_proc",
|
112 |
-
"label": "Data Processing",
|
113 |
-
"relationship": "can",
|
114 |
-
"subnodes": [
|
115 |
-
{
|
116 |
-
"id": "big_data",
|
117 |
-
"label": "Big Data",
|
118 |
-
"relationship": "as",
|
119 |
-
"subnodes": [
|
120 |
-
{
|
121 |
-
"id": "analysis_example",
|
122 |
-
"label": "Data Analysis",
|
123 |
-
"relationship": "example"
|
124 |
-
},
|
125 |
-
{
|
126 |
-
"id": "prediction_example",
|
127 |
-
"label": "Prediction",
|
128 |
-
"relationship": "example"
|
129 |
-
}
|
130 |
-
]
|
131 |
-
}
|
132 |
-
]
|
133 |
-
},
|
134 |
-
{
|
135 |
-
"id": "decision_making",
|
136 |
-
"label": "Decision Making",
|
137 |
-
"relationship": "can be",
|
138 |
-
"subnodes": [
|
139 |
-
{
|
140 |
-
"id": "automation",
|
141 |
-
"label": "Automation",
|
142 |
-
"relationship": "as",
|
143 |
-
"subnodes": [
|
144 |
-
{
|
145 |
-
"id": "robotics_example",
|
146 |
-
"label": "Robotics",
|
147 |
-
"relationship": "Example"},
|
148 |
-
{
|
149 |
-
"id": "autonomous_example",
|
150 |
-
"label": "Autonomous Vehicles",
|
151 |
-
"relationship": "of one"
|
152 |
-
}
|
153 |
-
]
|
154 |
-
}
|
155 |
-
]
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"id": "problem_solving",
|
159 |
-
"label": "Problem Solving",
|
160 |
-
"relationship": "can",
|
161 |
-
"subnodes": [
|
162 |
-
{
|
163 |
-
"id": "optimization",
|
164 |
-
"label": "Optimization",
|
165 |
-
"relationship": "as is",
|
166 |
-
"subnodes": [
|
167 |
-
{
|
168 |
-
"id": "algorithms_example",
|
169 |
-
"label": "Algorithms",
|
170 |
-
"relationship": "for example"
|
171 |
-
}
|
172 |
-
]
|
173 |
-
}
|
174 |
]
|
175 |
}
|
176 |
]
|
177 |
}
|
178 |
]
|
179 |
}
|
180 |
-
|
181 |
-
Returns:
|
182 |
-
str: The filepath to the generated PNG image file.
|
183 |
"""
|
184 |
try:
|
185 |
if not json_input.strip():
|
@@ -201,7 +75,9 @@ def generate_concept_map(json_input: str) -> str:
|
|
201 |
}
|
202 |
)
|
203 |
|
204 |
-
|
|
|
|
|
205 |
|
206 |
# Central node styling (rounded box, dark color)
|
207 |
dot.node(
|
|
|
4 |
import os
|
5 |
from graph_generator_utils import add_nodes_and_edges
|
6 |
|
7 |
+
def generate_concept_map(json_input: str, base_color: str) -> str:
|
8 |
"""
|
9 |
Generates a concept map from JSON input.
|
10 |
|
11 |
Args:
|
12 |
json_input (str): A JSON string describing the concept map structure.
|
13 |
It must follow the Expected JSON Format Example below.
|
14 |
+
base_color (str): The hexadecimal color string (e.g., '#19191a') for the base
|
15 |
+
color of the nodes, from which a gradient will be generated.
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
str: The filepath to the generated PNG image file.
|
19 |
|
20 |
Expected JSON Format Example:
|
21 |
{
|
|
|
31 |
"label": "Deep Learning",
|
32 |
"relationship": "for example",
|
33 |
"subnodes": [
|
34 |
+
{"id": "cnn_example", "label": "CNNs", "relationship": "for example"},
|
35 |
+
{"id": "rnn_example", "label": "RNNs", "relationship": "for example"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
]
|
37 |
}
|
38 |
]
|
|
|
47 |
"label": "AGI",
|
48 |
"relationship": "this is",
|
49 |
"subnodes": [
|
50 |
+
{"id": "strong_ai", "label": "Strong AI", "relationship": "provoked by"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
]
|
52 |
}
|
53 |
]
|
54 |
}
|
55 |
]
|
56 |
}
|
|
|
|
|
|
|
57 |
"""
|
58 |
try:
|
59 |
if not json_input.strip():
|
|
|
75 |
}
|
76 |
)
|
77 |
|
78 |
+
# Ensure base_color is valid, fallback if not
|
79 |
+
if not isinstance(base_color, str) or not base_color.startswith('#') or len(base_color) != 7:
|
80 |
+
base_color = '#19191a' # Fallback to default dark if invalid
|
81 |
|
82 |
# Central node styling (rounded box, dark color)
|
83 |
dot.node(
|