Update concept_map_generator.py
Browse files- concept_map_generator.py +174 -1
concept_map_generator.py
CHANGED
@@ -5,8 +5,181 @@ import os
|
|
5 |
from graph_generator_utils import add_nodes_and_edges
|
6 |
|
7 |
def generate_concept_map(json_input: str) -> str:
|
8 |
-
|
9 |
Generates a concept map from JSON input.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"""
|
11 |
try:
|
12 |
if not json_input.strip():
|
|
|
5 |
from graph_generator_utils import add_nodes_and_edges
|
6 |
|
7 |
def generate_concept_map(json_input: str) -> str:
|
8 |
+
"""
|
9 |
Generates a concept map from JSON input.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
json_input (str): A JSON string describing the concept map structure.
|
13 |
+
It must follow the Expected JSON Format Example below.
|
14 |
+
|
15 |
+
Expected JSON Format Example:
|
16 |
+
{
|
17 |
+
"central_node": "Artificial Intelligence (AI)",
|
18 |
+
"nodes": [
|
19 |
+
{
|
20 |
+
"id": "ml_fundamental",
|
21 |
+
"label": "Machine Learning",
|
22 |
+
"relationship": "is essential for",
|
23 |
+
"subnodes": [
|
24 |
+
{
|
25 |
+
"id": "dl_branch",
|
26 |
+
"label": "Deep Learning",
|
27 |
+
"relationship": "for example",
|
28 |
+
"subnodes": [
|
29 |
+
{
|
30 |
+
"id": "cnn_example",
|
31 |
+
"label": "CNNs",
|
32 |
+
"relationship": "for example"
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"id": "rnn_example",
|
36 |
+
"label": "RNNs",
|
37 |
+
"relationship": "for example"
|
38 |
+
}
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"id": "rl_branch",
|
43 |
+
"label": "Reinforcement Learning",
|
44 |
+
"relationship": "for example",
|
45 |
+
"subnodes": [
|
46 |
+
{
|
47 |
+
"id": "qlearning_example",
|
48 |
+
"label": "Q-Learning",
|
49 |
+
"relationship": "example"
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": "pg_example",
|
53 |
+
"label": "Policy Gradients",
|
54 |
+
"relationship": "example"
|
55 |
+
}
|
56 |
+
]
|
57 |
+
}
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"id": "ai_types",
|
62 |
+
"label": "Types",
|
63 |
+
"relationship": "formed by",
|
64 |
+
"subnodes": [
|
65 |
+
{
|
66 |
+
"id": "agi_type",
|
67 |
+
"label": "AGI",
|
68 |
+
"relationship": "this is",
|
69 |
+
"subnodes": [
|
70 |
+
{
|
71 |
+
"id": "strong_ai",
|
72 |
+
"label": "Strong AI",
|
73 |
+
"relationship": "provoked by",
|
74 |
+
"subnodes": [
|
75 |
+
{
|
76 |
+
"id": "human_intel",
|
77 |
+
"label": "Human-level Intel.",
|
78 |
+
"relationship": "of"
|
79 |
+
}
|
80 |
+
]
|
81 |
+
}
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"id": "ani_type",
|
86 |
+
"label": "ANI",
|
87 |
+
"relationship": "this is",
|
88 |
+
"subnodes": [
|
89 |
+
{
|
90 |
+
"id": "weak_ai",
|
91 |
+
"label": "Weak AI",
|
92 |
+
"relationship": "provoked by",
|
93 |
+
"subnodes": [
|
94 |
+
{
|
95 |
+
"id": "narrow_tasks",
|
96 |
+
"label": "Narrow Tasks",
|
97 |
+
"relationship": "of"
|
98 |
+
}
|
99 |
+
]
|
100 |
+
}
|
101 |
+
]
|
102 |
+
}
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"id": "ai_capabilities",
|
107 |
+
"label": "Capabilities",
|
108 |
+
"relationship": "change",
|
109 |
+
"subnodes": [
|
110 |
+
{
|
111 |
+
"id": "data_proc",
|
112 |
+
"label": "Data Processing",
|
113 |
+
"relationship": "can",
|
114 |
+
"subnodes": [
|
115 |
+
{
|
116 |
+
"id": "big_data",
|
117 |
+
"label": "Big Data",
|
118 |
+
"relationship": "as",
|
119 |
+
"subnodes": [
|
120 |
+
{
|
121 |
+
"id": "analysis_example",
|
122 |
+
"label": "Data Analysis",
|
123 |
+
"relationship": "example"
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"id": "prediction_example",
|
127 |
+
"label": "Prediction",
|
128 |
+
"relationship": "example"
|
129 |
+
}
|
130 |
+
]
|
131 |
+
}
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"id": "decision_making",
|
136 |
+
"label": "Decision Making",
|
137 |
+
"relationship": "can be",
|
138 |
+
"subnodes": [
|
139 |
+
{
|
140 |
+
"id": "automation",
|
141 |
+
"label": "Automation",
|
142 |
+
"relationship": "as",
|
143 |
+
"subnodes": [
|
144 |
+
{
|
145 |
+
"id": "robotics_example",
|
146 |
+
"label": "Robotics",
|
147 |
+
"relationship": "Example"},
|
148 |
+
{
|
149 |
+
"id": "autonomous_example",
|
150 |
+
"label": "Autonomous Vehicles",
|
151 |
+
"relationship": "of one"
|
152 |
+
}
|
153 |
+
]
|
154 |
+
}
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"id": "problem_solving",
|
159 |
+
"label": "Problem Solving",
|
160 |
+
"relationship": "can",
|
161 |
+
"subnodes": [
|
162 |
+
{
|
163 |
+
"id": "optimization",
|
164 |
+
"label": "Optimization",
|
165 |
+
"relationship": "as is",
|
166 |
+
"subnodes": [
|
167 |
+
{
|
168 |
+
"id": "algorithms_example",
|
169 |
+
"label": "Algorithms",
|
170 |
+
"relationship": "for example"
|
171 |
+
}
|
172 |
+
]
|
173 |
+
}
|
174 |
+
]
|
175 |
+
}
|
176 |
+
]
|
177 |
+
}
|
178 |
+
]
|
179 |
+
}
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
str: The filepath to the generated PNG image file.
|
183 |
"""
|
184 |
try:
|
185 |
if not json_input.strip():
|