File size: 4,824 Bytes
c66f90b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5f68d
65572dd
b3d2790
 
515dc44
65572dd
 
 
 
 
 
 
 
515dc44
b3d2790
 
 
 
 
 
515dc44
65572dd
 
19b2372
515dc44
65572dd
 
515dc44
19b2372
515dc44
 
 
65572dd
 
515dc44
65572dd
 
19b2372
 
515dc44
 
 
19b2372
 
65572dd
 
515dc44
1d5f68d
 
 
 
 
c66f90b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

@spaces.GPU(duration=45)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=768,
    height=768,
    guidance_scale=4.5,
    num_inference_steps=20,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed

examples = [
    "A full-body depiction of a futuristic cyberpunk warrior wearing neon armor with intricate details, holding a sleek glowing katana in a ready stance. The character stands confidently with glowing eyes and a dynamic pose that exudes strength and mystery. Isolated on a clean, transparent, or neutral background to emphasize the character's design and details, with subtle reflections and lighting to enhance the neon glow and textures.",
]

# Define the custom theme with input styles
class CustomTheme(gr.themes.Base):
    def __init__(self):
        super().__init__()
        self.primary_hue = "#5271FF"
        self.background_fill_primary = "#17181B"
        self.background_fill_secondary = "#17181B"
        self.background_fill_tertiary = "#17181B"
        self.text_color_primary = "#AEB3B8"
        self.text_color_secondary = "#AEB3B8"
        self.text_color_tertiary = "#AEB3B8"
        self.input_background_fill = "#17181B"  # Set input background color
        self.input_text_color = "#AEB3B8"       # Set input text color

# Custom CSS to hide the footer, set fonts, and adjust font weights
css = """
/* Hide the footer */
footer {
    visibility: hidden;
    height: 0;
    margin: 0;
    padding: 0;
    overflow: hidden;
}
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&family=Montserrat:wght@500;700&display=swap');
/* Apply fonts to different elements */
body, input, button, textarea, select, .gr-button {
    font-family: 'Roboto', sans-serif;
}
/* Make button text normal weight */
.generate-button, .generate-button .gr-button {
    font-weight: normal !important;
}
/* Ensure headings use Montserrat */
h1, h2, h3, h4, h5, h6 {
    font-family: 'Montserrat', sans-serif;
    font-weight: 700;
}
/* Additional styling for sliders and checkboxes if needed */
input[type="range"]::-webkit-slider-thumb {
    background: #5271FF;
}
input[type="range"]::-moz-range-thumb {
    background: #5271FF;
}
input[type="range"]::-ms-thumb {
    background: #5271FF;
}
input[type="checkbox"]:checked {
    background-color: #5271FF;
}
/* Make Prompt text bold */
.prompt-text {
    font-weight: bold;
}
"""

with gr.Blocks(theme=CustomTheme(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        # Make "Prompt" bold using Markdown syntax and assign a class
        gr.Markdown("**Prompt**", elem_classes="prompt-text")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button(
                "Generate",
                scale=0,
                variant="primary",
                elem_classes="generate-button"
            )

        result = gr.Image(label="Result", show_label=False)

        # Removed Advanced Settings block

        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result],
            fn=infer,
            cache_examples=True,
            cache_mode="lazy"
        )

    # Use click method for the button and submit for the text field
    run_button.click(
        fn=infer,
        inputs=[prompt],  # Only the prompt as input
        outputs=[result],  # Only result as output
    )
    prompt.submit(
        fn=infer,
        inputs=[prompt],  # Only the prompt as input
        outputs=[result],  # Only result as output
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_api=False
    )