Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,70 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
from PyPDF2 import PdfReader
|
6 |
-
import plotly.graph_objects as go
|
7 |
import time
|
8 |
|
9 |
# Set Page Configurations
|
10 |
st.set_page_config(page_title="GreenLens-AI", layout="wide")
|
11 |
-
|
|
|
12 |
st.markdown(
|
13 |
"""
|
14 |
-
<
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Google Drive Dataset Link
|
20 |
DATASET_URL = "https://drive.google.com/uc?id=1QY9yv2mhz4n8bOTi4ahbjBpapltqXV6D"
|
21 |
|
22 |
-
#
|
23 |
@st.cache_data
|
24 |
-
def
|
25 |
-
"""Fetch the
|
26 |
progress_text = "Fetching dataset from Google Drive..."
|
27 |
progress_bar = st.progress(0)
|
28 |
|
29 |
try:
|
30 |
-
# Download the file
|
31 |
response = requests.get(url, stream=True)
|
32 |
total_size = int(response.headers.get('content-length', 0))
|
33 |
downloaded_size = 0
|
34 |
chunks = []
|
35 |
|
36 |
-
# Download with progress
|
37 |
for chunk in response.iter_content(chunk_size=8192):
|
38 |
downloaded_size += len(chunk)
|
39 |
progress_bar.progress(min(1.0, downloaded_size / total_size), text=progress_text)
|
40 |
chunks.append(chunk)
|
41 |
|
42 |
pdf_content = b"".join(chunks)
|
43 |
-
progress_bar.progress(1.0, text="Processing
|
44 |
-
|
45 |
-
# Parse the PDF content
|
46 |
-
pdf_reader = PdfReader(BytesIO(pdf_content))
|
47 |
-
pdf_text = ""
|
48 |
-
for page in pdf_reader.pages:
|
49 |
-
pdf_text += page.extract_text()
|
50 |
-
|
51 |
-
# Parse relevant data from the text (mock implementation, adjust as needed)
|
52 |
-
fiber_impact_data = {
|
53 |
-
"Cotton": {"Water": 10000, "Energy": 60, "Carbon": 3.18},
|
54 |
-
"Polyester": {"Water": 62, "Energy": 125, "Carbon": 4.8},
|
55 |
-
"Nylon": {"Water": 70, "Energy": 120.47, "Carbon": 5.4},
|
56 |
-
"Acrylic": {"Water": 50, "Energy": 175, "Carbon": 6.2},
|
57 |
-
"Viscose": {"Water": 200, "Energy": 100, "Carbon": 4.2},
|
58 |
-
}
|
59 |
-
|
60 |
-
st.success("Dataset loaded successfully!")
|
61 |
-
return fiber_impact_data
|
62 |
-
|
63 |
except Exception as e:
|
64 |
-
st.error(f"Error fetching
|
65 |
return None
|
66 |
|
67 |
-
|
68 |
-
fiber_impact_data = fetch_and_process_pdf(DATASET_URL)
|
69 |
|
70 |
# Sidebar for User Inputs
|
71 |
st.sidebar.header("Input Product Details")
|
72 |
-
|
73 |
-
# Input Section: Product-Specific Inputs
|
74 |
product_type = st.sidebar.selectbox("Product Type", ["T-shirt", "Jeans", "Shirt", "Carpet"])
|
75 |
product_weight = st.sidebar.number_input("Product Weight (kg)", min_value=0.01, step=0.01, value=0.25)
|
76 |
|
@@ -82,10 +76,10 @@ nylon_percent = st.sidebar.slider("Nylon (%)", 0, 100, 10)
|
|
82 |
acrylic_percent = st.sidebar.slider("Acrylic (%)", 0, 100, 5)
|
83 |
viscose_percent = st.sidebar.slider("Viscose (%)", 0, 100, 5)
|
84 |
|
85 |
-
#
|
86 |
total_percentage = cotton_percent + polyester_percent + nylon_percent + acrylic_percent + viscose_percent
|
87 |
if total_percentage != 100:
|
88 |
-
st.sidebar.
|
89 |
|
90 |
# Lifecycle Inputs
|
91 |
st.sidebar.header("Lifecycle Details")
|
@@ -95,14 +89,21 @@ use_dryer = st.sidebar.checkbox("Use Tumble Dryer?")
|
|
95 |
transport_mode = st.sidebar.selectbox("Transport Mode", ["Plane", "Ship", "Train", "Truck"])
|
96 |
transport_distance = st.sidebar.number_input("Transport Distance (km)", min_value=0, step=50)
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# Function to calculate footprints
|
99 |
def calculate_footprints(weight, composition, lifecycle_inputs):
|
100 |
-
# Initialize footprints
|
101 |
water_footprint = 0
|
102 |
energy_footprint = 0
|
103 |
carbon_footprint = 0
|
104 |
|
105 |
-
# Fiber contributions
|
106 |
for fiber, percentage in composition.items():
|
107 |
if fiber in fiber_impact_data:
|
108 |
data = fiber_impact_data[fiber]
|
@@ -111,35 +112,13 @@ def calculate_footprints(weight, composition, lifecycle_inputs):
|
|
111 |
energy_footprint += data["Energy"] * weight * fraction
|
112 |
carbon_footprint += data["Carbon"] * weight * fraction
|
113 |
|
114 |
-
# Transportation
|
115 |
-
transport_factor = {
|
116 |
-
|
117 |
-
"Ship": 0.011,
|
118 |
-
"Train": 0.05,
|
119 |
-
"Truck": 0.25,
|
120 |
-
}[lifecycle_inputs["transport_mode"]]
|
121 |
-
|
122 |
-
transport_emissions = transport_factor * lifecycle_inputs["transport_distance"] * weight
|
123 |
-
carbon_footprint += transport_emissions
|
124 |
-
|
125 |
-
# Washing and drying impacts
|
126 |
-
washing_energy = {"Cold": 0.02, "30°C": 0.1, "40°C": 0.2, "60°C": 0.5}
|
127 |
-
dryer_energy = 0.5 if lifecycle_inputs["use_dryer"] else 0
|
128 |
-
carbon_footprint += (washing_energy[lifecycle_inputs["washing_temperature"]] * lifecycle_inputs["washing_cycles"] * 0.05)
|
129 |
-
energy_footprint += dryer_energy * lifecycle_inputs["washing_cycles"]
|
130 |
|
131 |
return water_footprint, energy_footprint, carbon_footprint
|
132 |
|
133 |
-
#
|
134 |
-
user_inputs = {
|
135 |
-
"transport_mode": transport_mode,
|
136 |
-
"transport_distance": transport_distance,
|
137 |
-
"washing_temperature": washing_temperature,
|
138 |
-
"washing_cycles": washing_cycles,
|
139 |
-
"use_dryer": use_dryer,
|
140 |
-
}
|
141 |
-
|
142 |
-
# Collect the composition dictionary
|
143 |
composition = {
|
144 |
"Cotton": cotton_percent,
|
145 |
"Polyester": polyester_percent,
|
@@ -148,8 +127,16 @@ composition = {
|
|
148 |
"Viscose": viscose_percent,
|
149 |
}
|
150 |
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, user_inputs)
|
154 |
|
155 |
# Display results
|
@@ -160,14 +147,14 @@ if fiber_impact_data and total_percentage == 100:
|
|
160 |
- **Carbon Footprint**: {carbon_fp:.2f} kgCO2e
|
161 |
""")
|
162 |
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
st.plotly_chart(
|
172 |
else:
|
173 |
-
st.error("Ensure
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
import plotly.graph_objects as go
|
5 |
import requests
|
6 |
from io import BytesIO
|
7 |
from PyPDF2 import PdfReader
|
|
|
8 |
import time
|
9 |
|
10 |
# Set Page Configurations
|
11 |
st.set_page_config(page_title="GreenLens-AI", layout="wide")
|
12 |
+
|
13 |
+
# Custom Styling for the App
|
14 |
st.markdown(
|
15 |
"""
|
16 |
+
<style>
|
17 |
+
body {
|
18 |
+
background-color: #d4edda; /* Light green background */
|
19 |
+
}
|
20 |
+
.stSlider > div {
|
21 |
+
background-color: #50C878 !important; /* Green slider bar */
|
22 |
+
}
|
23 |
+
h1, h2, p {
|
24 |
+
text-align: center;
|
25 |
+
color: #4CAF50;
|
26 |
+
}
|
27 |
+
</style>
|
28 |
+
""",
|
29 |
+
unsafe_allow_html=True
|
30 |
+
)
|
31 |
+
|
32 |
+
# Title and Tagline
|
33 |
+
st.markdown("<h1>GreenLens-AI</h1>", unsafe_allow_html=True)
|
34 |
+
st.markdown("<p>A Sustainable Tool for Calculating Carbon, Energy, and Ecological Footprints 🌿</p>", unsafe_allow_html=True)
|
35 |
|
36 |
# Google Drive Dataset Link
|
37 |
DATASET_URL = "https://drive.google.com/uc?id=1QY9yv2mhz4n8bOTi4ahbjBpapltqXV6D"
|
38 |
|
39 |
+
# Function to fetch and process dataset
|
40 |
@st.cache_data
|
41 |
+
def fetch_dataset(url):
|
42 |
+
"""Fetch the dataset from Google Drive."""
|
43 |
progress_text = "Fetching dataset from Google Drive..."
|
44 |
progress_bar = st.progress(0)
|
45 |
|
46 |
try:
|
|
|
47 |
response = requests.get(url, stream=True)
|
48 |
total_size = int(response.headers.get('content-length', 0))
|
49 |
downloaded_size = 0
|
50 |
chunks = []
|
51 |
|
|
|
52 |
for chunk in response.iter_content(chunk_size=8192):
|
53 |
downloaded_size += len(chunk)
|
54 |
progress_bar.progress(min(1.0, downloaded_size / total_size), text=progress_text)
|
55 |
chunks.append(chunk)
|
56 |
|
57 |
pdf_content = b"".join(chunks)
|
58 |
+
progress_bar.progress(1.0, text="Processing dataset...")
|
59 |
+
return PdfReader(BytesIO(pdf_content))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
except Exception as e:
|
61 |
+
st.error(f"Error fetching dataset: {e}")
|
62 |
return None
|
63 |
|
64 |
+
dataset = fetch_dataset(DATASET_URL)
|
|
|
65 |
|
66 |
# Sidebar for User Inputs
|
67 |
st.sidebar.header("Input Product Details")
|
|
|
|
|
68 |
product_type = st.sidebar.selectbox("Product Type", ["T-shirt", "Jeans", "Shirt", "Carpet"])
|
69 |
product_weight = st.sidebar.number_input("Product Weight (kg)", min_value=0.01, step=0.01, value=0.25)
|
70 |
|
|
|
76 |
acrylic_percent = st.sidebar.slider("Acrylic (%)", 0, 100, 5)
|
77 |
viscose_percent = st.sidebar.slider("Viscose (%)", 0, 100, 5)
|
78 |
|
79 |
+
# Validate percentage
|
80 |
total_percentage = cotton_percent + polyester_percent + nylon_percent + acrylic_percent + viscose_percent
|
81 |
if total_percentage != 100:
|
82 |
+
st.sidebar.warning("The total of all fiber percentages must equal 100%!")
|
83 |
|
84 |
# Lifecycle Inputs
|
85 |
st.sidebar.header("Lifecycle Details")
|
|
|
89 |
transport_mode = st.sidebar.selectbox("Transport Mode", ["Plane", "Ship", "Train", "Truck"])
|
90 |
transport_distance = st.sidebar.number_input("Transport Distance (km)", min_value=0, step=50)
|
91 |
|
92 |
+
# Mock Fiber Impact Data
|
93 |
+
fiber_impact_data = {
|
94 |
+
"Cotton": {"Water": 10000, "Energy": 60, "Carbon": 3.18},
|
95 |
+
"Polyester": {"Water": 62, "Energy": 125, "Carbon": 4.8},
|
96 |
+
"Nylon": {"Water": 70, "Energy": 120.47, "Carbon": 5.4},
|
97 |
+
"Acrylic": {"Water": 50, "Energy": 175, "Carbon": 6.2},
|
98 |
+
"Viscose": {"Water": 200, "Energy": 100, "Carbon": 4.2},
|
99 |
+
}
|
100 |
+
|
101 |
# Function to calculate footprints
|
102 |
def calculate_footprints(weight, composition, lifecycle_inputs):
|
|
|
103 |
water_footprint = 0
|
104 |
energy_footprint = 0
|
105 |
carbon_footprint = 0
|
106 |
|
|
|
107 |
for fiber, percentage in composition.items():
|
108 |
if fiber in fiber_impact_data:
|
109 |
data = fiber_impact_data[fiber]
|
|
|
112 |
energy_footprint += data["Energy"] * weight * fraction
|
113 |
carbon_footprint += data["Carbon"] * weight * fraction
|
114 |
|
115 |
+
# Transportation footprint
|
116 |
+
transport_factor = {"Plane": 1.102, "Ship": 0.011, "Train": 0.05, "Truck": 0.25}[lifecycle_inputs["transport_mode"]]
|
117 |
+
carbon_footprint += transport_factor * lifecycle_inputs["transport_distance"] * weight
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
return water_footprint, energy_footprint, carbon_footprint
|
120 |
|
121 |
+
# Composition dictionary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
composition = {
|
123 |
"Cotton": cotton_percent,
|
124 |
"Polyester": polyester_percent,
|
|
|
127 |
"Viscose": viscose_percent,
|
128 |
}
|
129 |
|
130 |
+
user_inputs = {
|
131 |
+
"transport_mode": transport_mode,
|
132 |
+
"transport_distance": transport_distance,
|
133 |
+
"washing_temperature": washing_temperature,
|
134 |
+
"washing_cycles": washing_cycles,
|
135 |
+
"use_dryer": use_dryer,
|
136 |
+
}
|
137 |
+
|
138 |
+
# Perform calculations
|
139 |
+
if total_percentage == 100:
|
140 |
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, user_inputs)
|
141 |
|
142 |
# Display results
|
|
|
147 |
- **Carbon Footprint**: {carbon_fp:.2f} kgCO2e
|
148 |
""")
|
149 |
|
150 |
+
# Separate Graphs for Each Footprint
|
151 |
+
fig_cfp = px.bar(x=["Carbon Footprint"], y=[carbon_fp], labels={"x": "Type", "y": "Value (kgCO2e)"}, title="Carbon Footprint")
|
152 |
+
fig_ep = px.bar(x=["Energy Footprint"], y=[energy_fp], labels={"x": "Type", "y": "Value (MJ)"}, title="Energy Footprint")
|
153 |
+
fig_ef = px.bar(x=["Ecological Footprint"], y=[water_fp], labels={"x": "Type", "y": "Value (liters)"}, title="Ecological Footprint")
|
154 |
+
|
155 |
+
# Display Graphs
|
156 |
+
st.plotly_chart(fig_cfp, use_container_width=True)
|
157 |
+
st.plotly_chart(fig_ep, use_container_width=True)
|
158 |
+
st.plotly_chart(fig_ef, use_container_width=True)
|
159 |
else:
|
160 |
+
st.error("Ensure that the material composition totals 100%.")
|