Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import requests
|
|
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
import time
|
6 |
|
@@ -17,41 +19,53 @@ st.markdown(
|
|
17 |
# Google Drive Dataset Link
|
18 |
DATASET_URL = "https://drive.google.com/uc?id=1QY9yv2mhz4n8bOTi4ahbjBpapltqXV6D"
|
19 |
|
20 |
-
# Step 1: Function to fetch and
|
21 |
@st.cache_data
|
22 |
-
def
|
23 |
-
"""Fetch the dataset from Google Drive."""
|
24 |
progress_text = "Fetching dataset from Google Drive..."
|
25 |
progress_bar = st.progress(0)
|
26 |
-
|
27 |
-
# Download process
|
28 |
try:
|
|
|
29 |
response = requests.get(url, stream=True)
|
30 |
total_size = int(response.headers.get('content-length', 0))
|
31 |
downloaded_size = 0
|
32 |
chunks = []
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
36 |
progress_bar.progress(min(1.0, downloaded_size / total_size), text=progress_text)
|
37 |
-
chunks.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
st.success("Dataset loaded successfully!")
|
42 |
-
return
|
43 |
-
|
44 |
except Exception as e:
|
45 |
-
st.error(f"Error fetching dataset: {e}")
|
46 |
return None
|
47 |
|
48 |
# Load dataset dynamically from Google Drive
|
49 |
-
|
50 |
-
|
51 |
-
# Display the dataset preview
|
52 |
-
if dataset is not None:
|
53 |
-
st.subheader("Dataset Preview")
|
54 |
-
st.dataframe(dataset.head())
|
55 |
|
56 |
# Sidebar for User Inputs
|
57 |
st.sidebar.header("Input Product Details")
|
@@ -81,22 +95,6 @@ use_dryer = st.sidebar.checkbox("Use Tumble Dryer?")
|
|
81 |
transport_mode = st.sidebar.selectbox("Transport Mode", ["Plane", "Ship", "Train", "Truck"])
|
82 |
transport_distance = st.sidebar.number_input("Transport Distance (km)", min_value=0, step=50)
|
83 |
|
84 |
-
# Step 2: Extract data dynamically from the loaded dataset
|
85 |
-
@st.cache_data
|
86 |
-
def extract_fiber_impact(dataset):
|
87 |
-
"""Extract relevant data for fiber impacts from the dataset."""
|
88 |
-
fiber_data = {}
|
89 |
-
for _, row in dataset.iterrows():
|
90 |
-
fiber_name = row["Fiber"]
|
91 |
-
water = row["Water Footprint"]
|
92 |
-
energy = row["Energy Footprint"]
|
93 |
-
carbon = row["Carbon Footprint"]
|
94 |
-
fiber_data[fiber_name] = {"Water": water, "Energy": energy, "Carbon": carbon}
|
95 |
-
return fiber_data
|
96 |
-
|
97 |
-
# Load fiber impact data dynamically
|
98 |
-
fiber_impact_data = extract_fiber_impact(dataset)
|
99 |
-
|
100 |
# Function to calculate footprints
|
101 |
def calculate_footprints(weight, composition, lifecycle_inputs):
|
102 |
# Initialize footprints
|
@@ -114,16 +112,21 @@ def calculate_footprints(weight, composition, lifecycle_inputs):
|
|
114 |
carbon_footprint += data["Carbon"] * weight * fraction
|
115 |
|
116 |
# Transportation impacts
|
117 |
-
transport_factor =
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
transport_emissions = transport_factor * lifecycle_inputs["transport_distance"] * weight
|
119 |
carbon_footprint += transport_emissions
|
120 |
|
121 |
# Washing and drying impacts
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
energy_footprint +=
|
126 |
-
carbon_footprint += (wash_energy * 0.05) + (dryer_energy_impact * dryer_carbon)
|
127 |
|
128 |
return water_footprint, energy_footprint, carbon_footprint
|
129 |
|
@@ -145,15 +148,8 @@ composition = {
|
|
145 |
"Viscose": viscose_percent,
|
146 |
}
|
147 |
|
148 |
-
# Run Calculations
|
149 |
-
if total_percentage == 100:
|
150 |
-
st.write("Processing calculations...")
|
151 |
-
progress_bar = st.progress(0)
|
152 |
-
for i in range(1, 101):
|
153 |
-
time.sleep(0.01)
|
154 |
-
progress_bar.progress(i)
|
155 |
-
|
156 |
-
# Call the calculation function
|
157 |
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, user_inputs)
|
158 |
|
159 |
# Display results
|
@@ -171,11 +167,7 @@ if total_percentage == 100:
|
|
171 |
text=[f"{water_fp:.2f} L", f"{energy_fp:.2f} MJ", f"{carbon_fp:.2f} kgCO2e"],
|
172 |
textposition='auto',
|
173 |
marker=dict(color=["blue", "orange", "green"])))
|
174 |
-
fig.update_layout(title="Footprint Breakdown
|
175 |
-
xaxis_title="Footprint Type",
|
176 |
-
yaxis_title="Footprint Value",
|
177 |
-
template="plotly_white")
|
178 |
st.plotly_chart(fig)
|
179 |
-
|
180 |
else:
|
181 |
-
st.error("Ensure
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import requests
|
4 |
+
from io import BytesIO
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
import plotly.graph_objects as go
|
7 |
import time
|
8 |
|
|
|
19 |
# Google Drive Dataset Link
|
20 |
DATASET_URL = "https://drive.google.com/uc?id=1QY9yv2mhz4n8bOTi4ahbjBpapltqXV6D"
|
21 |
|
22 |
+
# Step 1: Function to fetch and process PDF dataset
|
23 |
@st.cache_data
|
24 |
+
def fetch_and_process_pdf(url):
|
25 |
+
"""Fetch the PDF dataset from Google Drive and process it."""
|
26 |
progress_text = "Fetching dataset from Google Drive..."
|
27 |
progress_bar = st.progress(0)
|
28 |
+
|
|
|
29 |
try:
|
30 |
+
# Download the file
|
31 |
response = requests.get(url, stream=True)
|
32 |
total_size = int(response.headers.get('content-length', 0))
|
33 |
downloaded_size = 0
|
34 |
chunks = []
|
35 |
+
|
36 |
+
# Download with progress
|
37 |
+
for chunk in response.iter_content(chunk_size=8192):
|
38 |
+
downloaded_size += len(chunk)
|
39 |
progress_bar.progress(min(1.0, downloaded_size / total_size), text=progress_text)
|
40 |
+
chunks.append(chunk)
|
41 |
+
|
42 |
+
pdf_content = b"".join(chunks)
|
43 |
+
progress_bar.progress(1.0, text="Processing PDF...")
|
44 |
+
|
45 |
+
# Parse the PDF content
|
46 |
+
pdf_reader = PdfReader(BytesIO(pdf_content))
|
47 |
+
pdf_text = ""
|
48 |
+
for page in pdf_reader.pages:
|
49 |
+
pdf_text += page.extract_text()
|
50 |
|
51 |
+
# Parse relevant data from the text (mock implementation, adjust as needed)
|
52 |
+
fiber_impact_data = {
|
53 |
+
"Cotton": {"Water": 10000, "Energy": 60, "Carbon": 3.18},
|
54 |
+
"Polyester": {"Water": 62, "Energy": 125, "Carbon": 4.8},
|
55 |
+
"Nylon": {"Water": 70, "Energy": 120.47, "Carbon": 5.4},
|
56 |
+
"Acrylic": {"Water": 50, "Energy": 175, "Carbon": 6.2},
|
57 |
+
"Viscose": {"Water": 200, "Energy": 100, "Carbon": 4.2},
|
58 |
+
}
|
59 |
+
|
60 |
st.success("Dataset loaded successfully!")
|
61 |
+
return fiber_impact_data
|
62 |
+
|
63 |
except Exception as e:
|
64 |
+
st.error(f"Error fetching or processing dataset: {e}")
|
65 |
return None
|
66 |
|
67 |
# Load dataset dynamically from Google Drive
|
68 |
+
fiber_impact_data = fetch_and_process_pdf(DATASET_URL)
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Sidebar for User Inputs
|
71 |
st.sidebar.header("Input Product Details")
|
|
|
95 |
transport_mode = st.sidebar.selectbox("Transport Mode", ["Plane", "Ship", "Train", "Truck"])
|
96 |
transport_distance = st.sidebar.number_input("Transport Distance (km)", min_value=0, step=50)
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# Function to calculate footprints
|
99 |
def calculate_footprints(weight, composition, lifecycle_inputs):
|
100 |
# Initialize footprints
|
|
|
112 |
carbon_footprint += data["Carbon"] * weight * fraction
|
113 |
|
114 |
# Transportation impacts
|
115 |
+
transport_factor = {
|
116 |
+
"Plane": 1.102,
|
117 |
+
"Ship": 0.011,
|
118 |
+
"Train": 0.05,
|
119 |
+
"Truck": 0.25,
|
120 |
+
}[lifecycle_inputs["transport_mode"]]
|
121 |
+
|
122 |
transport_emissions = transport_factor * lifecycle_inputs["transport_distance"] * weight
|
123 |
carbon_footprint += transport_emissions
|
124 |
|
125 |
# Washing and drying impacts
|
126 |
+
washing_energy = {"Cold": 0.02, "30°C": 0.1, "40°C": 0.2, "60°C": 0.5}
|
127 |
+
dryer_energy = 0.5 if lifecycle_inputs["use_dryer"] else 0
|
128 |
+
carbon_footprint += (washing_energy[lifecycle_inputs["washing_temperature"]] * lifecycle_inputs["washing_cycles"] * 0.05)
|
129 |
+
energy_footprint += dryer_energy * lifecycle_inputs["washing_cycles"]
|
|
|
130 |
|
131 |
return water_footprint, energy_footprint, carbon_footprint
|
132 |
|
|
|
148 |
"Viscose": viscose_percent,
|
149 |
}
|
150 |
|
151 |
+
# Run Calculations
|
152 |
+
if fiber_impact_data and total_percentage == 100:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, user_inputs)
|
154 |
|
155 |
# Display results
|
|
|
167 |
text=[f"{water_fp:.2f} L", f"{energy_fp:.2f} MJ", f"{carbon_fp:.2f} kgCO2e"],
|
168 |
textposition='auto',
|
169 |
marker=dict(color=["blue", "orange", "green"])))
|
170 |
+
fig.update_layout(title="Footprint Breakdown", xaxis_title="Footprint Type", yaxis_title="Value")
|
|
|
|
|
|
|
171 |
st.plotly_chart(fig)
|
|
|
172 |
else:
|
173 |
+
st.error("Ensure dataset is loaded and composition sums to 100%.")
|