Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import requests
|
4 |
from io import BytesIO
|
5 |
import plotly.graph_objects as go
|
6 |
|
@@ -18,148 +17,163 @@ st.markdown(
|
|
18 |
unsafe_allow_html=True,
|
19 |
)
|
20 |
|
21 |
-
#
|
22 |
-
DATASET_URL = "https://ppl-ai-file-upload.s3.amazonaws.com/web/direct-files/23453236/59122b29-51ec-4aab-8b41-5301f001a94b/DataSet01.xlsx"
|
23 |
-
|
24 |
-
# Function to fetch and process Excel dataset
|
25 |
@st.cache_data
|
26 |
-
def
|
27 |
-
"""
|
28 |
try:
|
29 |
-
|
30 |
-
|
31 |
-
# Download the Excel file
|
32 |
-
response = requests.get(url)
|
33 |
-
if response.status_code != 200:
|
34 |
-
raise Exception("Failed to download the file. Check the URL or permissions.")
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
# Read
|
40 |
fiber_data = pd.read_excel(excel_content, sheet_name="Fiber Impact Data")
|
41 |
transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data")
|
42 |
washing_data = pd.read_excel(excel_content, sheet_name="Washing Data")
|
43 |
|
44 |
-
#
|
45 |
if not {"Fiber Type", "Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"}.issubset(fiber_data.columns):
|
46 |
-
raise Exception("Required columns missing in 'Fiber Impact Data'.")
|
47 |
if not {"Transport Mode", "CFP (kg CO2e/km)"}.issubset(transport_data.columns):
|
48 |
-
raise Exception("Required columns missing in 'Transport Impact Data'.")
|
49 |
if not {"Washing Temperature", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"}.issubset(
|
50 |
washing_data.columns
|
51 |
):
|
52 |
-
raise Exception("Required columns missing in 'Washing Data'.")
|
53 |
|
54 |
-
#
|
55 |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(
|
56 |
orient="index"
|
57 |
)
|
58 |
-
|
59 |
-
# Process Transport Impact Data
|
60 |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
|
61 |
-
|
62 |
-
# Process Washing Data
|
63 |
washing_impact_data = washing_data.set_index("Washing Temperature")[
|
64 |
["Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]
|
65 |
].to_dict(orient="index")
|
66 |
|
67 |
-
st.success("
|
68 |
return fiber_impact_data, transport_impact_data, washing_impact_data
|
69 |
|
70 |
except Exception as e:
|
71 |
-
st.error(f"Error
|
72 |
-
return None, None, None
|
73 |
-
|
74 |
-
|
75 |
-
# Load data dynamically from Google Drive
|
76 |
-
fiber_impact_data, transport_impact_data, washing_impact_data = fetch_and_process_excel(DATASET_URL)
|
77 |
-
|
78 |
-
# Sidebar for User Inputs
|
79 |
-
st.sidebar.header("Input Product Details")
|
80 |
-
|
81 |
-
product_type = st.sidebar.selectbox("Product Type", ["T-shirt", "Jeans", "Shirt", "Carpet"])
|
82 |
-
product_weight = st.sidebar.number_input("Product Weight (kg)", min_value=0.01, step=0.01, value=0.25)
|
83 |
-
|
84 |
-
# Fiber Composition Input
|
85 |
-
st.sidebar.subheader("Material Composition (%)")
|
86 |
-
cotton_percent = st.sidebar.slider("Cotton (%)", 0, 100, 50)
|
87 |
-
polyester_percent = st.sidebar.slider("Polyester (%)", 0, 100, 30)
|
88 |
-
nylon_percent = st.sidebar.slider("Nylon (%)", 0, 100, 10)
|
89 |
-
acrylic_percent = st.sidebar.slider("Acrylic (%)", 0, 100, 5)
|
90 |
-
viscose_percent = st.sidebar.slider("Viscose (%)", 0, 100, 5)
|
91 |
-
|
92 |
-
# Validation check: Percentages must add up to 100%
|
93 |
-
total_percentage = cotton_percent + polyester_percent + nylon_percent + acrylic_percent + viscose_percent
|
94 |
-
if total_percentage != 100:
|
95 |
-
st.sidebar.error("The total of all fiber percentages must equal 100%!")
|
96 |
-
|
97 |
-
st.sidebar.write(f"Total Material Percentage: {total_percentage}%")
|
98 |
-
|
99 |
-
# Lifecycle Inputs
|
100 |
-
st.sidebar.header("Lifecycle Details")
|
101 |
-
washing_cycles = st.sidebar.number_input("Number of Washing Cycles", min_value=0, step=10, value=30)
|
102 |
-
washing_temperature = st.sidebar.selectbox("Washing Temperature", list(washing_impact_data.keys()) if washing_impact_data else [])
|
103 |
-
use_dryer = st.sidebar.checkbox("Use Tumble Dryer?")
|
104 |
-
transport_mode = st.sidebar.selectbox("Transport Mode", list(transport_impact_data.keys()) if transport_impact_data else [])
|
105 |
-
transport_distance = st.sidebar.number_input("Transport Distance (km)", min_value=0, step=50)
|
106 |
-
|
107 |
-
# Function to calculate footprints
|
108 |
-
def calculate_footprints(weight, composition, lifecycle_inputs):
|
109 |
-
"""Calculate water, energy, and carbon footprints."""
|
110 |
-
try:
|
111 |
-
# Initialize footprints
|
112 |
-
water_footprint = 0
|
113 |
-
energy_footprint = 0
|
114 |
-
carbon_footprint = 0
|
115 |
-
|
116 |
-
# Fiber contributions
|
117 |
-
for fiber, percentage in composition.items():
|
118 |
-
if fiber in fiber_impact_data:
|
119 |
-
data = fiber_impact_data[fiber]
|
120 |
-
fraction = percentage / 100
|
121 |
-
water_footprint += data["Water (L/kg)"] * weight * fraction
|
122 |
-
energy_footprint += data["Energy (MJ/kg)"] * weight * fraction
|
123 |
-
carbon_footprint += data["Carbon (kg CO2e/kg)"] * weight * fraction
|
124 |
-
|
125 |
-
# Transportation impacts
|
126 |
-
transport_factor = transport_impact_data.get(lifecycle_inputs["transport_mode"], 0)
|
127 |
-
carbon_footprint += transport_factor * lifecycle_inputs["transport_distance"] * weight
|
128 |
-
|
129 |
-
# Washing and drying impacts
|
130 |
-
washing_data = washing_impact_data.get(lifecycle_inputs["washing_temperature"], {})
|
131 |
-
washing_energy = washing_data.get("Energy Use (MJ/wash)", 0) * lifecycle_inputs["washing_cycles"]
|
132 |
-
washing_carbon = washing_data.get("Carbon (kg CO2e/wash)", 0) * lifecycle_inputs["washing_cycles"]
|
133 |
-
dryer_carbon = washing_data.get("Dryer CFP (kg CO2e/cycle)", 0) if lifecycle_inputs["use_dryer"] else 0
|
134 |
-
|
135 |
-
energy_footprint += washing_energy
|
136 |
-
carbon_footprint += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
|
137 |
-
|
138 |
-
return water_footprint, energy_footprint, carbon_footprint
|
139 |
-
|
140 |
-
except Exception as e:
|
141 |
-
st.error(f"Error in calculations: {e}")
|
142 |
return None, None, None
|
143 |
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
"
|
157 |
-
|
158 |
-
|
159 |
-
"
|
160 |
-
"
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
from io import BytesIO
|
4 |
import plotly.graph_objects as go
|
5 |
|
|
|
17 |
unsafe_allow_html=True,
|
18 |
)
|
19 |
|
20 |
+
# Function to process Excel dataset
|
|
|
|
|
|
|
21 |
@st.cache_data
|
22 |
+
def process_excel(file):
|
23 |
+
"""Process data from the uploaded .xlsx file."""
|
24 |
try:
|
25 |
+
# Load Excel file
|
26 |
+
excel_content = BytesIO(file.read())
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Verify required sheets exist
|
29 |
+
sheets = pd.ExcelFile(excel_content).sheet_names
|
30 |
+
required_sheets = ["Fiber Impact Data", "Transport Impact Data", "Washing Data"]
|
31 |
+
for sheet in required_sheets:
|
32 |
+
if sheet not in sheets:
|
33 |
+
raise Exception(f"Required sheet '{sheet}' is missing from the Excel file.")
|
34 |
|
35 |
+
# Read data from Excel sheets
|
36 |
fiber_data = pd.read_excel(excel_content, sheet_name="Fiber Impact Data")
|
37 |
transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data")
|
38 |
washing_data = pd.read_excel(excel_content, sheet_name="Washing Data")
|
39 |
|
40 |
+
# Validate required columns in each sheet
|
41 |
if not {"Fiber Type", "Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"}.issubset(fiber_data.columns):
|
42 |
+
raise Exception("Required columns are missing in 'Fiber Impact Data' sheet.")
|
43 |
if not {"Transport Mode", "CFP (kg CO2e/km)"}.issubset(transport_data.columns):
|
44 |
+
raise Exception("Required columns are missing in 'Transport Impact Data' sheet.")
|
45 |
if not {"Washing Temperature", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"}.issubset(
|
46 |
washing_data.columns
|
47 |
):
|
48 |
+
raise Exception("Required columns are missing in 'Washing Data' sheet.")
|
49 |
|
50 |
+
# Convert data into dictionaries for calculations
|
51 |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(
|
52 |
orient="index"
|
53 |
)
|
|
|
|
|
54 |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
|
|
|
|
|
55 |
washing_impact_data = washing_data.set_index("Washing Temperature")[
|
56 |
["Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]
|
57 |
].to_dict(orient="index")
|
58 |
|
59 |
+
st.success("File successfully uploaded and processed!")
|
60 |
return fiber_impact_data, transport_impact_data, washing_impact_data
|
61 |
|
62 |
except Exception as e:
|
63 |
+
st.error(f"Error processing the Excel file: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
return None, None, None
|
65 |
|
66 |
|
67 |
+
# File uploader in Streamlit sidebar
|
68 |
+
uploaded_file = st.sidebar.file_uploader("Upload Dataset to Initiate", type=["xlsx"])
|
69 |
+
|
70 |
+
if uploaded_file is not None:
|
71 |
+
# Process the uploaded file
|
72 |
+
fiber_impact_data, transport_impact_data, washing_impact_data = process_excel(uploaded_file)
|
73 |
+
|
74 |
+
# Sidebar for User Inputs
|
75 |
+
st.sidebar.header("Input Product Details")
|
76 |
+
|
77 |
+
product_type = st.sidebar.selectbox("Product Type", ["T-shirt", "Jeans", "Shirt", "Carpet"])
|
78 |
+
product_weight = st.sidebar.number_input("Product Weight (kg)", min_value=0.01, step=0.01, value=0.25)
|
79 |
+
|
80 |
+
# Fiber Composition Input
|
81 |
+
st.sidebar.subheader("Material Composition (%)")
|
82 |
+
cotton_percent = st.sidebar.slider("Cotton (%)", 0, 100, 100)
|
83 |
+
polyester_percent = st.sidebar.slider("Polyester (%)", 0, 100, 0)
|
84 |
+
nylon_percent = st.sidebar.slider("Nylon (%)", 0, 100, 0)
|
85 |
+
acrylic_percent = st.sidebar.slider("Acrylic (%)", 0, 100, 0)
|
86 |
+
viscose_percent = st.sidebar.slider("Viscose (%)", 0, 100, 0)
|
87 |
+
|
88 |
+
# Validate composition percentages
|
89 |
+
total_percentage = cotton_percent + polyester_percent + nylon_percent + acrylic_percent + viscose_percent
|
90 |
+
if total_percentage != 100:
|
91 |
+
st.sidebar.error("The total of all fiber percentages must equal 100%!")
|
92 |
+
st.sidebar.write(f"Total Material Percentage: {total_percentage}%")
|
93 |
+
|
94 |
+
# Lifecycle Inputs
|
95 |
+
st.sidebar.header("Lifecycle Details")
|
96 |
+
washing_cycles = st.sidebar.number_input("Number of Washing Cycles", min_value=0, step=10, value=30)
|
97 |
+
washing_temperature = st.sidebar.selectbox("Washing Temperature", list(washing_impact_data.keys()) if washing_impact_data else [])
|
98 |
+
use_dryer = st.sidebar.checkbox("Use Tumble Dryer?")
|
99 |
+
transport_mode = st.sidebar.selectbox("Transport Mode", list(transport_impact_data.keys()) if transport_impact_data else [])
|
100 |
+
transport_distance = st.sidebar.number_input("Transport Distance (km)", min_value=0, step=50)
|
101 |
+
|
102 |
+
# Function to calculate footprints
|
103 |
+
def calculate_footprints(weight, composition, lifecycle_inputs):
|
104 |
+
"""Calculate water, energy, and carbon footprints."""
|
105 |
+
try:
|
106 |
+
# Initialize footprints
|
107 |
+
water_footprint = 0
|
108 |
+
energy_footprint = 0
|
109 |
+
carbon_footprint = 0
|
110 |
+
|
111 |
+
# Fiber contributions
|
112 |
+
for fiber, percentage in composition.items():
|
113 |
+
if fiber in fiber_impact_data:
|
114 |
+
data = fiber_impact_data[fiber]
|
115 |
+
fraction = percentage / 100
|
116 |
+
water_footprint += data["Water (L/kg)"] * weight * fraction
|
117 |
+
energy_footprint += data["Energy (MJ/kg)"] * weight * fraction
|
118 |
+
carbon_footprint += data["Carbon (kg CO2e/kg)"] * weight * fraction
|
119 |
+
|
120 |
+
# Transportation impacts
|
121 |
+
transport_factor = transport_impact_data.get(lifecycle_inputs["transport_mode"], 0)
|
122 |
+
carbon_footprint += transport_factor * lifecycle_inputs["transport_distance"] * weight
|
123 |
+
|
124 |
+
# Washing and drying impacts
|
125 |
+
washing_data = washing_impact_data.get(lifecycle_inputs["washing_temperature"], {})
|
126 |
+
washing_energy = washing_data.get("Energy Use (MJ/wash)", 0) * lifecycle_inputs["washing_cycles"]
|
127 |
+
washing_carbon = washing_data.get("Carbon (kg CO2e/wash)", 0) * lifecycle_inputs["washing_cycles"]
|
128 |
+
dryer_carbon = washing_data.get("Dryer CFP (kg CO2e/cycle)", 0) if lifecycle_inputs["use_dryer"] else 0
|
129 |
+
|
130 |
+
energy_footprint += washing_energy
|
131 |
+
carbon_footprint += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
|
132 |
+
|
133 |
+
return water_footprint, energy_footprint, carbon_footprint
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
st.error(f"Error in calculations: {e}")
|
137 |
+
return None, None, None
|
138 |
+
|
139 |
+
# Composition dictionary
|
140 |
+
composition = {
|
141 |
+
"Cotton": cotton_percent,
|
142 |
+
"Polyester": polyester_percent,
|
143 |
+
"Nylon": nylon_percent,
|
144 |
+
"Acrylic": acrylic_percent,
|
145 |
+
"Viscose": viscose_percent,
|
146 |
+
}
|
147 |
+
|
148 |
+
# Perform calculations
|
149 |
+
if total_percentage == 100:
|
150 |
+
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, {
|
151 |
+
"transport_mode": transport_mode,
|
152 |
+
"transport_distance": transport_distance,
|
153 |
+
"washing_temperature": washing_temperature,
|
154 |
+
"washing_cycles": washing_cycles,
|
155 |
+
"use_dryer": use_dryer,
|
156 |
+
})
|
157 |
+
|
158 |
+
if water_fp is not None:
|
159 |
+
# Display results
|
160 |
+
st.subheader("Calculated Results")
|
161 |
+
st.markdown(f"""
|
162 |
+
- **Water Footprint**: {water_fp:.2f} liters
|
163 |
+
- **Energy Footprint**: {energy_fp:.2f} MJ
|
164 |
+
- **Carbon Footprint**: {carbon_fp:.2f} kgCO2e
|
165 |
+
""")
|
166 |
+
|
167 |
+
# Visualization
|
168 |
+
fig = go.Figure()
|
169 |
+
fig.add_trace(go.Bar(
|
170 |
+
x=["Water Footprint", "Energy Footprint", "Carbon Footprint"],
|
171 |
+
y=[water_fp, energy_fp, carbon_fp],
|
172 |
+
text=[f"{water_fp:.2f} L", f"{energy_fp:.2f} MJ", f"{carbon_fp:.2f} kgCO2e"],
|
173 |
+
textposition="auto",
|
174 |
+
marker=dict(color=["blue", "orange", "green"])
|
175 |
+
))
|
176 |
+
fig.update_layout(title="Footprint Breakdown", xaxis_title="Footprint Type", yaxis_title="Value")
|
177 |
+
st.plotly_chart(fig)
|
178 |
+
else:
|
179 |
+
st.info("Please upload a valid Dataset to Begin")
|