Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
from groq import Groq
|
2 |
-
import os
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import plotly.express as px
|
6 |
|
7 |
-
# Add custom CSS for the app background and
|
8 |
def add_background():
|
9 |
background_url = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/BCK2.jpg"
|
10 |
css = f"""
|
@@ -16,19 +14,12 @@ def add_background():
|
|
16 |
background-attachment: fixed;
|
17 |
}}
|
18 |
.highlight {{
|
19 |
-
background-color: rgba(27, 27, 27, 0.
|
20 |
padding: 10px;
|
21 |
border-radius: 5px;
|
22 |
margin-bottom: 15px;
|
23 |
color: white;
|
24 |
}}
|
25 |
-
.recommendation {{
|
26 |
-
background-color: rgba(27, 27, 27, 0.8); /* 80% opaque black */
|
27 |
-
padding: 10px;
|
28 |
-
border-radius: 5px;
|
29 |
-
margin-top: 15px;
|
30 |
-
color: white;
|
31 |
-
}}
|
32 |
</style>
|
33 |
"""
|
34 |
st.markdown(css, unsafe_allow_html=True)
|
@@ -71,49 +62,91 @@ def process_dataset(url):
|
|
71 |
st.error(f"Error loading dataset: {e}")
|
72 |
return None, None, None
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
)
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
)
|
93 |
-
|
94 |
-
|
95 |
-
# Display recommendations with specified styling
|
96 |
-
def display_recommendations(recommendations):
|
97 |
-
if recommendations:
|
98 |
-
st.markdown(
|
99 |
-
f"""
|
100 |
-
<div class="recommendation">
|
101 |
-
<h3>Recommendations</h3>
|
102 |
-
<p>{recommendations}</p>
|
103 |
-
</div>
|
104 |
-
""",
|
105 |
-
unsafe_allow_html=True,
|
106 |
-
)
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
|
111 |
-
# Main application logic: Ensure all recommendations are displayed with correct styling
|
112 |
if fiber_impact_data and transport_impact_data and washing_impact_data:
|
113 |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
|
114 |
|
115 |
if comparison_mode:
|
116 |
-
#
|
117 |
col1, col2 = st.columns(2)
|
118 |
with col1:
|
119 |
weight1, composition1, lifecycle1 = get_inputs("Assessment 1")
|
@@ -124,10 +157,7 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
|
|
124 |
water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1)
|
125 |
water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2)
|
126 |
|
127 |
-
#
|
128 |
-
recommendations1 = get_groq_recommendations(water1, energy1, carbon1)
|
129 |
-
recommendations2 = get_groq_recommendations(water2, energy2, carbon2)
|
130 |
-
|
131 |
st.markdown(f"""
|
132 |
<div class="highlight">
|
133 |
<h2>Numerical Comparison</h2>
|
@@ -136,19 +166,27 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
|
|
136 |
</div>
|
137 |
""", unsafe_allow_html=True)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
else:
|
145 |
-
#
|
146 |
weight, composition, lifecycle = get_inputs("Single")
|
147 |
water, energy, carbon = calculate_footprints(weight, composition, lifecycle)
|
148 |
|
149 |
-
#
|
150 |
-
recommendations = get_groq_recommendations(water, energy, carbon)
|
151 |
-
|
152 |
st.markdown(f"""
|
153 |
<div class="highlight">
|
154 |
<h2>Single Assessment Results</h2>
|
@@ -158,8 +196,12 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
|
|
158 |
</div>
|
159 |
""", unsafe_allow_html=True)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
164 |
else:
|
165 |
st.error("Failed to load dataset.")
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
|
5 |
+
# Add custom CSS for the app background and highlighted text
|
6 |
def add_background():
|
7 |
background_url = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/BCK2.jpg"
|
8 |
css = f"""
|
|
|
14 |
background-attachment: fixed;
|
15 |
}}
|
16 |
.highlight {{
|
17 |
+
background-color: rgba(27, 27, 27, 0.7); /* 70% opaque black */
|
18 |
padding: 10px;
|
19 |
border-radius: 5px;
|
20 |
margin-bottom: 15px;
|
21 |
color: white;
|
22 |
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
</style>
|
24 |
"""
|
25 |
st.markdown(css, unsafe_allow_html=True)
|
|
|
62 |
st.error(f"Error loading dataset: {e}")
|
63 |
return None, None, None
|
64 |
|
65 |
+
# Calculate footprints
|
66 |
+
def calculate_footprints(weight, composition, lifecycle_inputs):
|
67 |
+
water_fp, energy_fp, carbon_fp = 0, 0, 0
|
68 |
+
for fiber, percentage in composition.items():
|
69 |
+
if fiber in fiber_impact_data:
|
70 |
+
data = fiber_impact_data[fiber]
|
71 |
+
fraction = percentage / 100
|
72 |
+
water_fp += data["Water (L/kg)"] * weight * fraction
|
73 |
+
energy_fp += data["Energy (MJ/kg)"] * weight * fraction
|
74 |
+
carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction
|
75 |
+
|
76 |
+
# Add transport impact
|
77 |
+
if lifecycle_inputs["transport_mode"] in transport_impact_data:
|
78 |
+
carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight
|
79 |
+
|
80 |
+
# Add washing impact
|
81 |
+
if lifecycle_inputs["washing_temperature"] in washing_impact_data:
|
82 |
+
washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]]
|
83 |
+
washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"]
|
84 |
+
washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"]
|
85 |
+
washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"]
|
86 |
+
dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0
|
87 |
+
water_fp += washing_water
|
88 |
+
energy_fp += washing_energy
|
89 |
+
carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
|
90 |
+
|
91 |
+
# Convert water from liters to kiloliters
|
92 |
+
water_fp /= 1000
|
93 |
+
return water_fp, energy_fp, carbon_fp
|
94 |
+
|
95 |
+
# Sidebar inputs
|
96 |
+
def get_inputs(prefix):
|
97 |
+
weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight")
|
98 |
+
st.sidebar.markdown(f"<h3 style='color: white;'>{prefix} Material Composition (%)</h3>", unsafe_allow_html=True)
|
99 |
+
cotton = st.sidebar.number_input("Conventional Cotton (%)", 0, 100, 0, step=1, key=f"{prefix}_cotton")
|
100 |
+
polyester = st.sidebar.number_input("Polyester (%)", 0, 100, 0, step=1, key=f"{prefix}_polyester")
|
101 |
+
nylon = st.sidebar.number_input("Nylon 6 (%)", 0, 100, 0, step=1, key=f"{prefix}_nylon")
|
102 |
+
acrylic = st.sidebar.number_input("Acrylic (%)", 0, 100, 0, step=1, key=f"{prefix}_acrylic")
|
103 |
+
viscose = st.sidebar.number_input("Viscose (%)", 0, 100, 0, step=1, key=f"{prefix}_viscose")
|
104 |
+
|
105 |
+
if cotton + polyester + nylon + acrylic + viscose != 100:
|
106 |
+
st.sidebar.error("Fiber composition must sum to 100%!")
|
107 |
+
|
108 |
+
st.sidebar.markdown(f"<h3 style='color: white;'>{prefix} Transport Inputs</h3>", unsafe_allow_html=True)
|
109 |
+
transport_mode = st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode")
|
110 |
+
transport_distance = st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=0, step=10, key=f"{prefix}_transport_distance")
|
111 |
+
|
112 |
+
lifecycle_inputs = {
|
113 |
+
"washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=0, key=f"{prefix}_wash_cycles"),
|
114 |
+
"washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"),
|
115 |
+
"use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"),
|
116 |
+
"transport_mode": transport_mode,
|
117 |
+
"transport_distance": transport_distance,
|
118 |
+
}
|
119 |
+
|
120 |
+
composition = {
|
121 |
+
"Conventional Cotton": cotton,
|
122 |
+
"Polyester": polyester,
|
123 |
+
"Nylon 6": nylon,
|
124 |
+
"Acrylic": acrylic,
|
125 |
+
"Viscose": viscose,
|
126 |
+
}
|
127 |
+
return weight, composition, lifecycle_inputs
|
128 |
+
|
129 |
+
# Adjust graph styling
|
130 |
+
def style_figure(fig):
|
131 |
+
fig.update_layout(
|
132 |
+
plot_bgcolor="rgba(27, 27, 27, 0.8)", # 20% transparency
|
133 |
+
paper_bgcolor="rgba(27, 27, 27, 0.8)", # 20% transparency
|
134 |
+
font=dict(color="white"), # Font color set to white
|
135 |
+
title_font=dict(size=18, color="white"), # Title font white
|
136 |
+
xaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")),
|
137 |
+
yaxis=dict(title_font=dict(color="white"), tickfont=dict(color="white")),
|
138 |
)
|
139 |
+
fig.update_traces(marker=dict(color="white", line=dict(color="gray", width=1))) # Simulate 3D effect with border
|
140 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
# Main application logic
|
143 |
+
fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)
|
144 |
|
|
|
145 |
if fiber_impact_data and transport_impact_data and washing_impact_data:
|
146 |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
|
147 |
|
148 |
if comparison_mode:
|
149 |
+
# Input for two assessments
|
150 |
col1, col2 = st.columns(2)
|
151 |
with col1:
|
152 |
weight1, composition1, lifecycle1 = get_inputs("Assessment 1")
|
|
|
157 |
water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1)
|
158 |
water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2)
|
159 |
|
160 |
+
# Display numerical comparison
|
|
|
|
|
|
|
161 |
st.markdown(f"""
|
162 |
<div class="highlight">
|
163 |
<h2>Numerical Comparison</h2>
|
|
|
166 |
</div>
|
167 |
""", unsafe_allow_html=True)
|
168 |
|
169 |
+
# Bar chart comparison
|
170 |
+
comparison_data = pd.DataFrame({
|
171 |
+
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
172 |
+
"Assessment 1": [water1, energy1, carbon1],
|
173 |
+
"Assessment 2": [water2, energy2, carbon2],
|
174 |
+
})
|
175 |
+
fig = px.bar(
|
176 |
+
comparison_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
|
177 |
+
x="Footprint Type",
|
178 |
+
y="Value",
|
179 |
+
color_discrete_sequence=["white"],
|
180 |
+
title="Comparison of Assessments"
|
181 |
+
)
|
182 |
+
st.plotly_chart(style_figure(fig))
|
183 |
|
184 |
else:
|
185 |
+
# Input for a single assessment
|
186 |
weight, composition, lifecycle = get_inputs("Single")
|
187 |
water, energy, carbon = calculate_footprints(weight, composition, lifecycle)
|
188 |
|
189 |
+
# Display results
|
|
|
|
|
190 |
st.markdown(f"""
|
191 |
<div class="highlight">
|
192 |
<h2>Single Assessment Results</h2>
|
|
|
196 |
</div>
|
197 |
""", unsafe_allow_html=True)
|
198 |
|
199 |
+
# Bar chart for single assessment
|
200 |
+
result_data = pd.DataFrame({
|
201 |
+
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
202 |
+
"Value": [water, energy, carbon]
|
203 |
+
})
|
204 |
+
fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown")
|
205 |
+
st.plotly_chart(style_figure(fig))
|
206 |
else:
|
207 |
st.error("Failed to load dataset.")
|