Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import plotly.express as px
|
|
4 |
import requests
|
5 |
from io import BytesIO
|
6 |
from PyPDF2 import PdfReader
|
7 |
-
import time
|
8 |
|
9 |
# Set Page Configurations
|
10 |
st.set_page_config(page_title="GreenLens-AI", layout="wide")
|
@@ -36,56 +35,52 @@ st.markdown("<p>A Sustainable Tool for Calculating Carbon, Energy, and Ecologica
|
|
36 |
DATASET_URL = "https://drive.google.com/uc?id=1QY9yv2mhz4n8bOTi4ahbjBpapltqXV6D"
|
37 |
|
38 |
# Function to fetch dataset from Google Drive
|
39 |
-
@st.cache_data
|
40 |
def fetch_pdf_from_drive(url):
|
41 |
"""Fetch the dataset (PDF) from Google Drive."""
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
try:
|
46 |
-
response = requests.get(url, stream=True)
|
47 |
total_size = int(response.headers.get('content-length', 0))
|
48 |
downloaded_size = 0
|
49 |
chunks = []
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
pdf_content = b"".join(chunks)
|
57 |
-
progress_bar.progress(1.0, text="Download Complete")
|
58 |
st.success("Dataset downloaded successfully!")
|
59 |
return PdfReader(BytesIO(pdf_content))
|
60 |
-
|
61 |
-
|
62 |
-
st.error(f"Error fetching dataset: {e}")
|
63 |
return None
|
64 |
|
65 |
-
# Function to extract data from the PDF
|
66 |
-
@st.cache_data
|
67 |
def process_pdf_data(pdf_reader):
|
68 |
-
"""
|
|
|
69 |
extracted_data = {}
|
|
|
70 |
for page in pdf_reader.pages:
|
71 |
text = page.extract_text()
|
72 |
-
|
|
|
73 |
if "Global average water footprint of cotton fabric" in text:
|
74 |
extracted_data["Cotton"] = {"Water": 10000, "Energy": 60, "Carbon": 3.18}
|
75 |
if "Water footprint by region: China" in text:
|
76 |
extracted_data["China"] = {"Water": 6000}
|
|
|
|
|
77 |
return extracted_data
|
78 |
|
79 |
-
# Fetch
|
80 |
-
st.info("Fetching dataset. Please wait...")
|
81 |
pdf_reader = fetch_pdf_from_drive(DATASET_URL)
|
82 |
if pdf_reader:
|
83 |
fiber_impact_data = process_pdf_data(pdf_reader)
|
84 |
-
|
85 |
-
st.error("Failed to extract data from the PDF. Please check the PDF structure.")
|
86 |
else:
|
87 |
-
st.
|
88 |
-
fiber_impact_data = {}
|
89 |
|
90 |
# Sidebar for User Inputs
|
91 |
st.sidebar.header("Input Product Details")
|
|
|
4 |
import requests
|
5 |
from io import BytesIO
|
6 |
from PyPDF2 import PdfReader
|
|
|
7 |
|
8 |
# Set Page Configurations
|
9 |
st.set_page_config(page_title="GreenLens-AI", layout="wide")
|
|
|
35 |
DATASET_URL = "https://drive.google.com/uc?id=1QY9yv2mhz4n8bOTi4ahbjBpapltqXV6D"
|
36 |
|
37 |
# Function to fetch dataset from Google Drive
|
|
|
38 |
def fetch_pdf_from_drive(url):
|
39 |
"""Fetch the dataset (PDF) from Google Drive."""
|
40 |
+
st.info("Downloading dataset from Google Drive...")
|
41 |
+
response = requests.get(url, stream=True)
|
42 |
+
if response.status_code == 200:
|
|
|
|
|
43 |
total_size = int(response.headers.get('content-length', 0))
|
44 |
downloaded_size = 0
|
45 |
chunks = []
|
46 |
|
47 |
+
with st.spinner("Fetching dataset..."):
|
48 |
+
for chunk in response.iter_content(chunk_size=8192):
|
49 |
+
downloaded_size += len(chunk)
|
50 |
+
chunks.append(chunk)
|
51 |
|
52 |
pdf_content = b"".join(chunks)
|
|
|
53 |
st.success("Dataset downloaded successfully!")
|
54 |
return PdfReader(BytesIO(pdf_content))
|
55 |
+
else:
|
56 |
+
st.error("Failed to fetch dataset. Please check the URL or your internet connection.")
|
|
|
57 |
return None
|
58 |
|
59 |
+
# Function to extract relevant data from the PDF
|
|
|
60 |
def process_pdf_data(pdf_reader):
|
61 |
+
"""Process the PDF file and extract relevant data."""
|
62 |
+
st.info("Processing dataset...")
|
63 |
extracted_data = {}
|
64 |
+
|
65 |
for page in pdf_reader.pages:
|
66 |
text = page.extract_text()
|
67 |
+
|
68 |
+
# Example parsing rules (adjust based on the actual file format):
|
69 |
if "Global average water footprint of cotton fabric" in text:
|
70 |
extracted_data["Cotton"] = {"Water": 10000, "Energy": 60, "Carbon": 3.18}
|
71 |
if "Water footprint by region: China" in text:
|
72 |
extracted_data["China"] = {"Water": 6000}
|
73 |
+
|
74 |
+
st.success("Dataset processed successfully!")
|
75 |
return extracted_data
|
76 |
|
77 |
+
# Step 1: Fetch dataset from Google Drive
|
|
|
78 |
pdf_reader = fetch_pdf_from_drive(DATASET_URL)
|
79 |
if pdf_reader:
|
80 |
fiber_impact_data = process_pdf_data(pdf_reader)
|
81 |
+
st.write(fiber_impact_data) # Debugging: Display parsed data
|
|
|
82 |
else:
|
83 |
+
st.stop()
|
|
|
84 |
|
85 |
# Sidebar for User Inputs
|
86 |
st.sidebar.header("Input Product Details")
|