Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,29 +2,30 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
|
5 |
-
# Set page configurations
|
6 |
st.set_page_config(page_title="GreenLens-AI", layout="wide")
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
}
|
19 |
-
</style>
|
20 |
-
""",
|
21 |
-
unsafe_allow_html=True
|
22 |
-
)
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
@st.cache_data
|
29 |
def process_excel(file):
|
30 |
try:
|
@@ -33,18 +34,24 @@ def process_excel(file):
|
|
33 |
transport_data = pd.read_excel(file, sheet_name="Transport Impact Data")
|
34 |
washing_data = pd.read_excel(file, sheet_name="Washing Data")
|
35 |
|
36 |
-
# Convert
|
37 |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
|
38 |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
|
39 |
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
|
|
|
40 |
return fiber_impact_data, transport_impact_data, washing_impact_data
|
41 |
except Exception as e:
|
42 |
-
st.error(f"Error processing file: {e}")
|
43 |
return None, None, None
|
44 |
|
45 |
-
#
|
|
|
|
|
|
|
|
|
46 |
def calculate_footprints(weight, composition, lifecycle_inputs):
|
47 |
water_fp, energy_fp, carbon_fp = 0, 0, 0
|
|
|
48 |
for fiber, percentage in composition.items():
|
49 |
if fiber in fiber_impact_data:
|
50 |
data = fiber_impact_data[fiber]
|
@@ -52,94 +59,116 @@ def calculate_footprints(weight, composition, lifecycle_inputs):
|
|
52 |
water_fp += data["Water (L/kg)"] * weight * fraction
|
53 |
energy_fp += data["Energy (MJ/kg)"] * weight * fraction
|
54 |
carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction
|
55 |
-
|
56 |
if lifecycle_inputs["transport_mode"] in transport_impact_data:
|
57 |
carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight
|
58 |
-
|
59 |
if lifecycle_inputs["washing_temperature"] in washing_impact_data:
|
60 |
washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]]
|
61 |
washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"]
|
62 |
washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"]
|
63 |
washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"]
|
64 |
dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0
|
|
|
65 |
water_fp += washing_water
|
66 |
energy_fp += washing_energy
|
67 |
carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
|
68 |
-
|
69 |
-
water_fp /= 1000 # Convert water from liters to kiloliters
|
70 |
-
return water_fp, energy_fp, carbon_fp
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
st.sidebar.subheader(f"{prefix} Material Composition (%)")
|
76 |
-
cotton = st.sidebar.number_input("Conventional Cotton (%)", 0, 100, 50, step=1, key=f"{prefix}_cotton")
|
77 |
-
polyester = st.sidebar.number_input("Polyester (%)", 0, 100, 30, step=1, key=f"{prefix}_polyester")
|
78 |
-
nylon = st.sidebar.number_input("Nylon 6 (%)", 0, 100, 10, step=1, key=f"{prefix}_nylon")
|
79 |
-
acrylic = st.sidebar.number_input("Acrylic (%)", 0, 100, 5, step=1, key=f"{prefix}_acrylic")
|
80 |
-
viscose = st.sidebar.number_input("Viscose (%)", 0, 100, 5, step=1, key=f"{prefix}_viscose")
|
81 |
-
|
82 |
-
if cotton + polyester + nylon + acrylic + viscose != 100:
|
83 |
-
st.sidebar.error("Fiber composition must sum to 100%!")
|
84 |
-
|
85 |
-
lifecycle_inputs = {
|
86 |
-
"washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=30, key=f"{prefix}_wash_cycles"),
|
87 |
-
"washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"),
|
88 |
-
"use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"),
|
89 |
-
"transport_mode": st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode"),
|
90 |
-
"transport_distance": st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=100, step=10, key=f"{prefix}_transport_distance")
|
91 |
-
}
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
composition = {
|
94 |
"Conventional Cotton": cotton,
|
95 |
"Polyester": polyester,
|
96 |
"Nylon 6": nylon,
|
97 |
"Acrylic": acrylic,
|
98 |
-
"Viscose": viscose
|
99 |
}
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
st.sidebar.
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
|
109 |
|
110 |
if comparison_mode:
|
|
|
111 |
col1, col2 = st.columns(2)
|
112 |
with col1:
|
113 |
st.subheader("Assessment 1")
|
114 |
-
|
115 |
with col2:
|
116 |
st.subheader("Assessment 2")
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
|
|
121 |
|
122 |
-
|
123 |
-
|
|
|
124 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
125 |
-
"Assessment 1": [
|
126 |
-
"Assessment 2": [
|
127 |
})
|
128 |
-
fig = px.line(
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
st.plotly_chart(fig)
|
132 |
else:
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
st.subheader("Results")
|
136 |
-
st.markdown(f"- **Water Footprint**: {
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
141 |
-
"Value": [
|
142 |
-
})
|
|
|
143 |
st.plotly_chart(fig)
|
144 |
else:
|
145 |
st.info("Please upload a dataset to proceed.")
|
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
|
5 |
+
# Set page configurations
|
6 |
st.set_page_config(page_title="GreenLens-AI", layout="wide")
|
7 |
|
8 |
+
# Page title and description
|
9 |
+
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>GreenLens-AI</h1>", unsafe_allow_html=True)
|
10 |
+
st.markdown(
|
11 |
+
"""
|
12 |
+
<p style='text-align: center; color: #4CAF50;'>
|
13 |
+
A Tool for Calculating Water, Energy, and Carbon Footprints of Textile Products 🌍
|
14 |
+
</p>
|
15 |
+
""",
|
16 |
+
unsafe_allow_html=True,
|
17 |
+
)
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# Sidebar for file upload
|
20 |
+
st.sidebar.header("Step 1: Upload Dataset")
|
21 |
+
uploaded_file = st.sidebar.file_uploader("Upload your Excel file (.xlsx)", type=["xlsx"])
|
22 |
+
|
23 |
+
# Initialize data containers
|
24 |
+
fiber_impact_data = None
|
25 |
+
transport_impact_data = None
|
26 |
+
washing_impact_data = None
|
27 |
|
28 |
+
# Function to process the uploaded Excel file
|
29 |
@st.cache_data
|
30 |
def process_excel(file):
|
31 |
try:
|
|
|
34 |
transport_data = pd.read_excel(file, sheet_name="Transport Impact Data")
|
35 |
washing_data = pd.read_excel(file, sheet_name="Washing Data")
|
36 |
|
37 |
+
# Convert into dictionaries for dynamic calculations
|
38 |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
|
39 |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
|
40 |
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
|
41 |
+
|
42 |
return fiber_impact_data, transport_impact_data, washing_impact_data
|
43 |
except Exception as e:
|
44 |
+
st.error(f"Error processing the file: {e}")
|
45 |
return None, None, None
|
46 |
|
47 |
+
# Process uploaded file
|
48 |
+
if uploaded_file:
|
49 |
+
fiber_impact_data, transport_impact_data, washing_impact_data = process_excel(uploaded_file)
|
50 |
+
|
51 |
+
# Function to calculate footprints
|
52 |
def calculate_footprints(weight, composition, lifecycle_inputs):
|
53 |
water_fp, energy_fp, carbon_fp = 0, 0, 0
|
54 |
+
|
55 |
for fiber, percentage in composition.items():
|
56 |
if fiber in fiber_impact_data:
|
57 |
data = fiber_impact_data[fiber]
|
|
|
59 |
water_fp += data["Water (L/kg)"] * weight * fraction
|
60 |
energy_fp += data["Energy (MJ/kg)"] * weight * fraction
|
61 |
carbon_fp += data["Carbon (kg CO2e/kg)"] * weight * fraction
|
62 |
+
|
63 |
if lifecycle_inputs["transport_mode"] in transport_impact_data:
|
64 |
carbon_fp += transport_impact_data[lifecycle_inputs["transport_mode"]] * lifecycle_inputs["transport_distance"] * weight
|
65 |
+
|
66 |
if lifecycle_inputs["washing_temperature"] in washing_impact_data:
|
67 |
washing_data = washing_impact_data[lifecycle_inputs["washing_temperature"]]
|
68 |
washing_water = washing_data["Water (L/kg)"] * lifecycle_inputs["washing_cycles"]
|
69 |
washing_energy = washing_data["Energy Use (MJ/wash)"] * lifecycle_inputs["washing_cycles"]
|
70 |
washing_carbon = washing_data["Carbon (kg CO2e/wash)"] * lifecycle_inputs["washing_cycles"]
|
71 |
dryer_carbon = washing_data["Dryer CFP (kg CO2e/cycle)"] if lifecycle_inputs["use_dryer"] else 0
|
72 |
+
|
73 |
water_fp += washing_water
|
74 |
energy_fp += washing_energy
|
75 |
carbon_fp += washing_carbon + (dryer_carbon * lifecycle_inputs["washing_cycles"])
|
|
|
|
|
|
|
76 |
|
77 |
+
# Convert water footprint from liters to kiloliters for visualization
|
78 |
+
water_fp_kL = water_fp / 1000 # Convert liters to kiloliters
|
79 |
+
return water_fp_kL, energy_fp, carbon_fp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# Sidebar inputs for all scenarios
|
82 |
+
def get_inputs(key_prefix):
|
83 |
+
product_weight = st.sidebar.number_input(f"{key_prefix} - Product Weight (kg)", min_value=0.01, step=0.01, value=0.5, key=f"{key_prefix}_weight")
|
84 |
+
|
85 |
+
st.sidebar.subheader(f"{key_prefix} - Material Composition (%)")
|
86 |
+
cotton = st.sidebar.number_input("Conventional Cotton (%)", min_value=0, max_value=100, value=50, step=1, key=f"{key_prefix}_cotton")
|
87 |
+
polyester = st.sidebar.number_input("Polyester (%)", min_value=0, max_value=100, value=30, step=1, key=f"{key_prefix}_polyester")
|
88 |
+
nylon = st.sidebar.number_input("Nylon 6 (%)", min_value=0, max_value=100, value=10, step=1, key=f"{key_prefix}_nylon")
|
89 |
+
acrylic = st.sidebar.number_input("Acrylic (%)", min_value=0, max_value=100, value=5, step=1, key=f"{key_prefix}_acrylic")
|
90 |
+
viscose = st.sidebar.number_input("Viscose (%)", min_value=0, max_value=100, value=5, step=1, key=f"{key_prefix}_viscose")
|
91 |
+
|
92 |
+
total_percentage = cotton + polyester + nylon + acrylic + viscose
|
93 |
+
if total_percentage != 100:
|
94 |
+
st.sidebar.error(f"Total composition for {key_prefix} must be 100%!")
|
95 |
+
|
96 |
composition = {
|
97 |
"Conventional Cotton": cotton,
|
98 |
"Polyester": polyester,
|
99 |
"Nylon 6": nylon,
|
100 |
"Acrylic": acrylic,
|
101 |
+
"Viscose": viscose,
|
102 |
}
|
103 |
+
|
104 |
+
st.sidebar.subheader(f"{key_prefix} - Lifecycle Inputs")
|
105 |
+
washing_cycles = st.sidebar.number_input(f"{key_prefix} - Washing Cycles", min_value=0, step=1, value=30, key=f"{key_prefix}_wash_cycles")
|
106 |
+
washing_temperature = st.sidebar.selectbox(f"{key_prefix} - Washing Temperature", list(washing_impact_data.keys()), key=f"{key_prefix}_wash_temp")
|
107 |
+
use_dryer = st.sidebar.checkbox(f"{key_prefix} - Use Tumble Dryer?", key=f"{key_prefix}_use_dryer")
|
108 |
+
transport_mode = st.sidebar.selectbox(f"{key_prefix} - Transport Mode", list(transport_impact_data.keys()), key=f"{key_prefix}_transport_mode")
|
109 |
+
transport_distance = st.sidebar.number_input(f"{key_prefix} - Transport Distance (km)", min_value=0, step=10, value=100, key=f"{key_prefix}_transport_distance")
|
110 |
+
|
111 |
+
lifecycle_inputs = {
|
112 |
+
"washing_temperature": washing_temperature,
|
113 |
+
"washing_cycles": washing_cycles,
|
114 |
+
"use_dryer": use_dryer,
|
115 |
+
"transport_mode": transport_mode,
|
116 |
+
"transport_distance": transport_distance,
|
117 |
+
}
|
118 |
+
|
119 |
+
return product_weight, composition, lifecycle_inputs
|
120 |
|
121 |
+
# Main interface
|
122 |
+
if uploaded_file and fiber_impact_data and transport_impact_data and washing_impact_data:
|
123 |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
|
124 |
|
125 |
if comparison_mode:
|
126 |
+
# Input for two assessments
|
127 |
col1, col2 = st.columns(2)
|
128 |
with col1:
|
129 |
st.subheader("Assessment 1")
|
130 |
+
product_weight_1, composition_1, lifecycle_inputs_1 = get_inputs("Assessment 1")
|
131 |
with col2:
|
132 |
st.subheader("Assessment 2")
|
133 |
+
product_weight_2, composition_2, lifecycle_inputs_2 = get_inputs("Assessment 2")
|
134 |
|
135 |
+
# Calculations for both assessments
|
136 |
+
water_fp_1, energy_fp_1, carbon_fp_1 = calculate_footprints(product_weight_1, composition_1, lifecycle_inputs_1)
|
137 |
+
water_fp_2, energy_fp_2, carbon_fp_2 = calculate_footprints(product_weight_2, composition_2, lifecycle_inputs_2)
|
138 |
|
139 |
+
# Combined visualization with line chart
|
140 |
+
st.subheader("Comparison of Assessments")
|
141 |
+
assessment_data = pd.DataFrame({
|
142 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
143 |
+
"Assessment 1": [water_fp_1, energy_fp_1, carbon_fp_1],
|
144 |
+
"Assessment 2": [water_fp_2, energy_fp_2, carbon_fp_2],
|
145 |
})
|
146 |
+
fig = px.line(
|
147 |
+
assessment_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
|
148 |
+
x="Footprint Type",
|
149 |
+
y="Value",
|
150 |
+
color="Assessment",
|
151 |
+
markers=True,
|
152 |
+
title="Footprint Trends: Assessment 1 vs. Assessment 2"
|
153 |
+
)
|
154 |
st.plotly_chart(fig)
|
155 |
else:
|
156 |
+
# Input for single calculation
|
157 |
+
product_weight, composition, lifecycle_inputs = get_inputs("")
|
158 |
+
water_fp, energy_fp, carbon_fp = calculate_footprints(product_weight, composition, lifecycle_inputs)
|
159 |
+
|
160 |
+
# Display results
|
161 |
st.subheader("Results")
|
162 |
+
st.markdown(f"- **Water Footprint**: {water_fp:.2f} kL")
|
163 |
+
st.markdown(f"- **Energy Footprint**: {energy_fp:.2f} MJ")
|
164 |
+
st.markdown(f"- **Carbon Footprint**: {carbon_fp:.2f} kg CO2e")
|
165 |
+
|
166 |
+
# Visualization for single scenario
|
167 |
+
result_data = pd.DataFrame({
|
168 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
169 |
+
"Value": [water_fp, energy_fp, carbon_fp],
|
170 |
+
})
|
171 |
+
fig = px.line(result_data, x="Footprint Type", y="Value", markers=True, title="Footprint Trends")
|
172 |
st.plotly_chart(fig)
|
173 |
else:
|
174 |
st.info("Please upload a dataset to proceed.")
|