Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,24 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
|
5 |
-
# Set page configuration
|
6 |
-
st.set_page_config(page_title="GreenLens
|
7 |
-
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
DATASET_URL = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/DataSet01.xlsx"
|
10 |
|
11 |
-
|
12 |
-
# Process dataset from Hugging Face Spaces
|
13 |
@st.cache_data
|
14 |
def process_dataset(url):
|
15 |
try:
|
@@ -18,13 +28,13 @@ def process_dataset(url):
|
|
18 |
transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data")
|
19 |
washing_data = pd.read_excel(excel_content, sheet_name="Washing Data")
|
20 |
|
21 |
-
# Convert data
|
22 |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
|
23 |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
|
24 |
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
|
25 |
return fiber_impact_data, transport_impact_data, washing_impact_data
|
26 |
except Exception as e:
|
27 |
-
st.error(f"Error
|
28 |
return None, None, None
|
29 |
|
30 |
|
@@ -58,23 +68,23 @@ def calculate_footprints(weight, composition, lifecycle_inputs):
|
|
58 |
|
59 |
# Sidebar inputs
|
60 |
def get_inputs(prefix):
|
61 |
-
weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.
|
62 |
st.sidebar.subheader(f"{prefix} Material Composition (%)")
|
63 |
-
cotton = st.sidebar.number_input("Conventional Cotton (%)",
|
64 |
-
polyester = st.sidebar.number_input("Polyester (%)",
|
65 |
-
nylon = st.sidebar.number_input("Nylon 6 (%)",
|
66 |
-
acrylic = st.sidebar.number_input("Acrylic (%)",
|
67 |
-
viscose = st.sidebar.number_input("Viscose (%)",
|
68 |
|
69 |
if cotton + polyester + nylon + acrylic + viscose != 100:
|
70 |
st.sidebar.error("Fiber composition must sum to 100%!")
|
71 |
|
72 |
lifecycle_inputs = {
|
73 |
-
"washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=
|
74 |
"washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"),
|
75 |
"use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"),
|
76 |
"transport_mode": st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode"),
|
77 |
-
"transport_distance": st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=
|
78 |
}
|
79 |
|
80 |
composition = {
|
@@ -82,19 +92,19 @@ def get_inputs(prefix):
|
|
82 |
"Polyester": polyester,
|
83 |
"Nylon 6": nylon,
|
84 |
"Acrylic": acrylic,
|
85 |
-
"Viscose": viscose
|
86 |
}
|
87 |
return weight, composition, lifecycle_inputs
|
88 |
|
89 |
|
90 |
-
# Main
|
91 |
-
st.sidebar.header("Step 1: Configuration")
|
92 |
fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)
|
93 |
|
94 |
if fiber_impact_data and transport_impact_data and washing_impact_data:
|
95 |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
|
96 |
|
97 |
if comparison_mode:
|
|
|
98 |
col1, col2 = st.columns(2)
|
99 |
with col1:
|
100 |
st.subheader("Assessment 1")
|
@@ -103,14 +113,20 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
|
|
103 |
st.subheader("Assessment 2")
|
104 |
weight2, composition2, lifecycle2 = get_inputs("Assessment 2")
|
105 |
|
|
|
106 |
water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1)
|
107 |
water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2)
|
108 |
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
110 |
comparison_data = pd.DataFrame({
|
111 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
112 |
"Assessment 1": [water1, energy1, carbon1],
|
113 |
-
"Assessment 2": [water2, energy2, carbon2]
|
114 |
})
|
115 |
fig = px.bar(
|
116 |
comparison_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
|
@@ -122,19 +138,22 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
|
|
122 |
st.plotly_chart(fig)
|
123 |
|
124 |
else:
|
|
|
125 |
weight, composition, lifecycle = get_inputs("Single")
|
126 |
water, energy, carbon = calculate_footprints(weight, composition, lifecycle)
|
127 |
|
128 |
-
|
129 |
-
st.
|
130 |
-
|
131 |
-
|
|
|
132 |
|
|
|
133 |
result_data = pd.DataFrame({
|
134 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
135 |
"Value": [water, energy, carbon]
|
136 |
})
|
137 |
-
fig = px.bar(result_data, x="Footprint Type", y="Value", title="Footprint Breakdown")
|
138 |
st.plotly_chart(fig)
|
139 |
else:
|
140 |
st.error("Failed to load dataset.")
|
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
|
5 |
+
# Set page configuration
|
6 |
+
st.set_page_config(page_title="GreenLens AI", layout="wide")
|
7 |
+
|
8 |
+
# Title and subtitle
|
9 |
+
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>GreenLens AI</h1>", unsafe_allow_html=True)
|
10 |
+
st.markdown(
|
11 |
+
"""
|
12 |
+
<p style='text-align: center; color: #4CAF50; font-size: 18px;'>
|
13 |
+
A Comprehensive Tool for Assessing Water, Energy, and Carbon Footprints of Textile Products 🌍
|
14 |
+
</p>
|
15 |
+
""",
|
16 |
+
unsafe_allow_html=True,
|
17 |
+
)
|
18 |
+
|
19 |
+
# Dataset URL
|
20 |
DATASET_URL = "https://huggingface.co/spaces/ZainMalik0925/GreenLensAI_LCA/resolve/main/DataSet01.xlsx"
|
21 |
|
22 |
+
# Load dataset from Hugging Face Spaces
|
|
|
23 |
@st.cache_data
|
24 |
def process_dataset(url):
|
25 |
try:
|
|
|
28 |
transport_data = pd.read_excel(excel_content, sheet_name="Transport Impact Data")
|
29 |
washing_data = pd.read_excel(excel_content, sheet_name="Washing Data")
|
30 |
|
31 |
+
# Convert data to dictionaries for calculations
|
32 |
fiber_impact_data = fiber_data.set_index("Fiber Type")[["Water (L/kg)", "Energy (MJ/kg)", "Carbon (kg CO2e/kg)"]].to_dict(orient="index")
|
33 |
transport_impact_data = transport_data.set_index("Transport Mode")["CFP (kg CO2e/km)"].to_dict()
|
34 |
washing_impact_data = washing_data.set_index("Washing Temperature")[["Water (L/kg)", "Energy Use (MJ/wash)", "Carbon (kg CO2e/wash)", "Dryer CFP (kg CO2e/cycle)"]].to_dict(orient="index")
|
35 |
return fiber_impact_data, transport_impact_data, washing_impact_data
|
36 |
except Exception as e:
|
37 |
+
st.error(f"Error loading dataset: {e}")
|
38 |
return None, None, None
|
39 |
|
40 |
|
|
|
68 |
|
69 |
# Sidebar inputs
|
70 |
def get_inputs(prefix):
|
71 |
+
weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight")
|
72 |
st.sidebar.subheader(f"{prefix} Material Composition (%)")
|
73 |
+
cotton = st.sidebar.number_input("Conventional Cotton (%)", 0, 100, 0, step=1, key=f"{prefix}_cotton")
|
74 |
+
polyester = st.sidebar.number_input("Polyester (%)", 0, 100, 0, step=1, key=f"{prefix}_polyester")
|
75 |
+
nylon = st.sidebar.number_input("Nylon 6 (%)", 0, 100, 0, step=1, key=f"{prefix}_nylon")
|
76 |
+
acrylic = st.sidebar.number_input("Acrylic (%)", 0, 100, 0, step=1, key=f"{prefix}_acrylic")
|
77 |
+
viscose = st.sidebar.number_input("Viscose (%)", 0, 100, 0, step=1, key=f"{prefix}_viscose")
|
78 |
|
79 |
if cotton + polyester + nylon + acrylic + viscose != 100:
|
80 |
st.sidebar.error("Fiber composition must sum to 100%!")
|
81 |
|
82 |
lifecycle_inputs = {
|
83 |
+
"washing_cycles": st.sidebar.number_input(f"{prefix} Washing Cycles", min_value=0, value=0, key=f"{prefix}_wash_cycles"),
|
84 |
"washing_temperature": st.sidebar.selectbox(f"{prefix} Washing Temperature", list(washing_impact_data.keys()), key=f"{prefix}_wash_temp"),
|
85 |
"use_dryer": st.sidebar.checkbox(f"{prefix} Use Dryer?", key=f"{prefix}_use_dryer"),
|
86 |
"transport_mode": st.sidebar.selectbox(f"{prefix} Transport Mode", list(transport_impact_data.keys()), key=f"{prefix}_transport_mode"),
|
87 |
+
"transport_distance": st.sidebar.number_input(f"{prefix} Transport Distance (km)", min_value=0, value=0, step=10, key=f"{prefix}_transport_distance"),
|
88 |
}
|
89 |
|
90 |
composition = {
|
|
|
92 |
"Polyester": polyester,
|
93 |
"Nylon 6": nylon,
|
94 |
"Acrylic": acrylic,
|
95 |
+
"Viscose": viscose,
|
96 |
}
|
97 |
return weight, composition, lifecycle_inputs
|
98 |
|
99 |
|
100 |
+
# Main application logic
|
|
|
101 |
fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)
|
102 |
|
103 |
if fiber_impact_data and transport_impact_data and washing_impact_data:
|
104 |
comparison_mode = st.sidebar.checkbox("Enable Comparison Mode")
|
105 |
|
106 |
if comparison_mode:
|
107 |
+
# Input for two assessments
|
108 |
col1, col2 = st.columns(2)
|
109 |
with col1:
|
110 |
st.subheader("Assessment 1")
|
|
|
113 |
st.subheader("Assessment 2")
|
114 |
weight2, composition2, lifecycle2 = get_inputs("Assessment 2")
|
115 |
|
116 |
+
# Calculate footprints for both assessments
|
117 |
water1, energy1, carbon1 = calculate_footprints(weight1, composition1, lifecycle1)
|
118 |
water2, energy2, carbon2 = calculate_footprints(weight2, composition2, lifecycle2)
|
119 |
|
120 |
+
# Display numerical comparison
|
121 |
+
st.subheader("Numerical Comparison")
|
122 |
+
st.write(f"**Assessment 1**: Water: {water1:.2f} kL, Energy: {energy1:.2f} MJ, Carbon: {carbon1:.2f} kg CO2e")
|
123 |
+
st.write(f"**Assessment 2**: Water: {water2:.2f} kL, Energy: {energy2:.2f} MJ, Carbon: {carbon2:.2f} kg CO2e")
|
124 |
+
|
125 |
+
# Bar chart comparison
|
126 |
comparison_data = pd.DataFrame({
|
127 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
128 |
"Assessment 1": [water1, energy1, carbon1],
|
129 |
+
"Assessment 2": [water2, energy2, carbon2],
|
130 |
})
|
131 |
fig = px.bar(
|
132 |
comparison_data.melt(id_vars="Footprint Type", var_name="Assessment", value_name="Value"),
|
|
|
138 |
st.plotly_chart(fig)
|
139 |
|
140 |
else:
|
141 |
+
# Input for a single assessment
|
142 |
weight, composition, lifecycle = get_inputs("Single")
|
143 |
water, energy, carbon = calculate_footprints(weight, composition, lifecycle)
|
144 |
|
145 |
+
# Display results
|
146 |
+
st.subheader("Single Assessment Results")
|
147 |
+
st.markdown(f"- **Water Footprint**: {water:.2f} kL")
|
148 |
+
st.markdown(f"- **Energy Footprint**: {energy:.2f} MJ")
|
149 |
+
st.markdown(f"- **Carbon Footprint**: {carbon:.2f} kg CO2e")
|
150 |
|
151 |
+
# Bar chart for single assessment
|
152 |
result_data = pd.DataFrame({
|
153 |
"Footprint Type": ["Water (kL)", "Energy (MJ)", "Carbon (kg CO2e)"],
|
154 |
"Value": [water, energy, carbon]
|
155 |
})
|
156 |
+
fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown")
|
157 |
st.plotly_chart(fig)
|
158 |
else:
|
159 |
st.error("Failed to load dataset.")
|