ZainMalik0925 commited on
Commit
bc1fd3e
·
verified ·
1 Parent(s): e22a184

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -7
app.py CHANGED
@@ -23,11 +23,11 @@ st.set_page_config(page_title="GreenLens AI", layout="wide")
23
  # Call the background function to load the background silently
24
  add_background()
25
 
26
- # Title and subtitle
27
- st.markdown("<h1 style='text-align: center; color: #4CAF50;'>GreenLens AI</h1>", unsafe_allow_html=True)
28
  st.markdown(
29
  """
30
- <p style='text-align: center; color: #4CAF50; font-size: 18px;'>
31
  A Comprehensive Tool for Assessing Water, Energy, and Carbon Footprints of Textile Products 🌍
32
  </p>
33
  """,
@@ -55,7 +55,6 @@ def process_dataset(url):
55
  st.error(f"Error loading dataset: {e}")
56
  return None, None, None
57
 
58
-
59
  # Calculate footprints
60
  def calculate_footprints(weight, composition, lifecycle_inputs):
61
  water_fp, energy_fp, carbon_fp = 0, 0, 0
@@ -83,7 +82,6 @@ def calculate_footprints(weight, composition, lifecycle_inputs):
83
  water_fp /= 1000 # Convert water from liters to kiloliters
84
  return water_fp, energy_fp, carbon_fp
85
 
86
-
87
  # Sidebar inputs
88
  def get_inputs(prefix):
89
  weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight")
@@ -114,6 +112,14 @@ def get_inputs(prefix):
114
  }
115
  return weight, composition, lifecycle_inputs
116
 
 
 
 
 
 
 
 
 
117
 
118
  # Main application logic
119
  fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)
@@ -151,7 +157,7 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
151
  color="Assessment",
152
  title="Comparison of Assessments"
153
  )
154
- st.plotly_chart(fig)
155
 
156
  else:
157
  # Input for a single assessment
@@ -170,6 +176,6 @@ if fiber_impact_data and transport_impact_data and washing_impact_data:
170
  "Value": [water, energy, carbon]
171
  })
172
  fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown")
173
- st.plotly_chart(fig)
174
  else:
175
  st.error("Failed to load dataset.")
 
23
  # Call the background function to load the background silently
24
  add_background()
25
 
26
+ # Title and subtitle with updated color
27
+ st.markdown("<h1 style='text-align: center; color: white;'>GreenLens AI</h1>", unsafe_allow_html=True)
28
  st.markdown(
29
  """
30
+ <p style='text-align: center; color: white; font-size: 18px;'>
31
  A Comprehensive Tool for Assessing Water, Energy, and Carbon Footprints of Textile Products 🌍
32
  </p>
33
  """,
 
55
  st.error(f"Error loading dataset: {e}")
56
  return None, None, None
57
 
 
58
  # Calculate footprints
59
  def calculate_footprints(weight, composition, lifecycle_inputs):
60
  water_fp, energy_fp, carbon_fp = 0, 0, 0
 
82
  water_fp /= 1000 # Convert water from liters to kiloliters
83
  return water_fp, energy_fp, carbon_fp
84
 
 
85
  # Sidebar inputs
86
  def get_inputs(prefix):
87
  weight = st.sidebar.number_input(f"{prefix} Product Weight (kg)", min_value=0.0, value=0.0, step=0.01, key=f"{prefix}_weight")
 
112
  }
113
  return weight, composition, lifecycle_inputs
114
 
115
+ # Adjust graph transparency
116
+ def style_figure(fig):
117
+ fig.update_layout(
118
+ plot_bgcolor="rgba(0,0,0,0.3)", # 30% transparent black
119
+ paper_bgcolor="rgba(0,0,0,0.3)", # 30% transparent black
120
+ font=dict(color="white") # Set font color to white for better visibility
121
+ )
122
+ return fig
123
 
124
  # Main application logic
125
  fiber_impact_data, transport_impact_data, washing_impact_data = process_dataset(DATASET_URL)
 
157
  color="Assessment",
158
  title="Comparison of Assessments"
159
  )
160
+ st.plotly_chart(style_figure(fig))
161
 
162
  else:
163
  # Input for a single assessment
 
176
  "Value": [water, energy, carbon]
177
  })
178
  fig = px.bar(result_data, x="Footprint Type", y="Value", title="Single Assessment Footprint Breakdown")
179
+ st.plotly_chart(style_figure(fig))
180
  else:
181
  st.error("Failed to load dataset.")