File size: 21,422 Bytes
b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 604af1c b09b599 89c0b51 604af1c 89c0b51 604af1c 89c0b51 604af1c 89c0b51 b09b599 604af1c b09b599 604af1c b09b599 4d252c9 b09b599 89c0b51 b09b599 604af1c b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 69c8126 5347f77 69c8126 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 604af1c b09b599 89c0b51 b09b599 604af1c b09b599 604af1c b09b599 89c0b51 b09b599 604af1c b09b599 89c0b51 b09b599 89c0b51 604af1c b09b599 89c0b51 b09b599 604af1c b09b599 89c0b51 b09b599 fc3e7c4 0b938ff fc3e7c4 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 89c0b51 b09b599 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
import spaces
import logging
import gradio as gr
import os
import uuid
from datetime import datetime
import numpy as np
from configs.configs_base import configs as configs_base
from configs.configs_data import data_configs
from configs.configs_inference import inference_configs
from runner.inference import download_infercence_cache, update_inference_configs, infer_predict, infer_detect, InferenceRunner
from protenix.config import parse_configs, parse_sys_args
from runner.msa_search import update_infer_json
from protenix.web_service.prediction_visualization import plot_best_confidence_measure, PredictionLoader
from process_data import process_data
import json
from typing import Dict, List
from Bio.PDB import MMCIFParser, PDBIO
import tempfile
import shutil
from Bio import PDB
from gradio_molecule3d import Molecule3D
EXAMPLE_PATH = './examples/example.json'
example_json=[{'sequences': [{'proteinChain': {'sequence': 'MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH', 'count': 2}}, {'dnaSequence': {'sequence': 'CTAGGTAACATTACTCGCG', 'count': 2}}, {'dnaSequence': {'sequence': 'GCGAGTAATGTTAC', 'count': 2}}, {'ligand': {'ligand': 'CCD_PCG', 'count': 2}}], 'name': '7pzb_need_search_msa'}]
# Custom CSS for styling
custom_css = """
#logo {
width: 50%;
}
.title {
font-size: 32px;
font-weight: bold;
color: #4CAF50;
display: flex;
align-items: center; /* Vertically center the logo and text */
}
"""
os.environ["LAYERNORM_TYPE"] = "fast_layernorm"
os.environ["USE_DEEPSPEED_EVO_ATTTENTION"] = "False"
# Set environment variable in the script
#os.environ['CUTLASS_PATH'] = './cutlass'
# reps = [
# {
# "model": 0,
# "chain": "",
# "resname": "",
# "style": "cartoon", # Use cartoon style
# "color": "whiteCarbon",
# "residue_range": "",
# "around": 0,
# "byres": False,
# "visible": True # Ensure this representation is visible
# }
# ]
reps = [
{
"model": 0,
"chain": "",
"resname": "",
"style": "cartoon",
"color": "whiteCarbon",
"residue_range": "",
"around": 0,
"byres": False,
"opacity": 0.2,
},
{
"model": 1,
"chain": "",
"resname": "",
"style": "cartoon",
"color": "cyanCarbon",
"residue_range": "",
"around": 0,
"byres": False,
"opacity": 0.8,
}
]
##
def align_pdb_files(pdb_file_1, pdb_file_2):
# Load the structures
parser = PDB.PPBuilder()
io = PDB.PDBIO()
structure_1 = PDB.PDBParser(QUIET=True).get_structure('Structure_1', pdb_file_1)
structure_2 = PDB.PDBParser(QUIET=True).get_structure('Structure_2', pdb_file_2)
# Superimpose the second structure onto the first
super_imposer = PDB.Superimposer()
model_1 = structure_1[0]
model_2 = structure_2[0]
# Extract the coordinates from the two structures
atoms_1 = [atom for atom in model_1.get_atoms() if atom.get_name() == "CA"] # Use CA atoms
atoms_2 = [atom for atom in model_2.get_atoms() if atom.get_name() == "CA"]
# Align the structures based on the CA atoms
coord_1 = [atom.get_coord() for atom in atoms_1]
coord_2 = [atom.get_coord() for atom in atoms_2]
super_imposer.set_atoms(atoms_1, atoms_2)
super_imposer.apply(model_2) # Apply the transformation to model_2
# Save the aligned structure back to the original file
io.set_structure(structure_2) # Save the aligned structure to the second file (original file)
io.save(pdb_file_2)
# Function to convert .cif to .pdb and save as a temporary file
def convert_cif_to_pdb(cif_path):
"""
Convert a CIF file to a PDB file and save it as a temporary file.
Args:
cif_path (str): Path to the input CIF file.
Returns:
str: Path to the temporary PDB file.
"""
# Initialize the MMCIF parser
parser = MMCIFParser()
structure = parser.get_structure("protein", cif_path)
# Create a temporary file for the PDB output
with tempfile.NamedTemporaryFile(suffix=".pdb", delete=False) as temp_file:
temp_pdb_path = temp_file.name
# Save the structure as a PDB file
io = PDBIO()
io.set_structure(structure)
io.save(temp_pdb_path)
return temp_pdb_path
def plot_3d(pred_loader):
# Get the CIF file path for the given prediction ID
cif_path = sorted(pred_loader.cif_paths)[0]
# Convert the CIF file to a temporary PDB file
temp_pdb_path = convert_cif_to_pdb(cif_path)
return temp_pdb_path, cif_path
def parse_json_input(json_data: List[Dict]) -> Dict:
"""Convert Protenix JSON format to UI-friendly structure"""
components = {
"protein_chains": [],
"dna_sequences": [],
"ligands": [],
"complex_name": ""
}
for entry in json_data:
components["complex_name"] = entry.get("name", "")
for seq in entry["sequences"]:
if "proteinChain" in seq:
components["protein_chains"].append({
"sequence": seq["proteinChain"]["sequence"],
"count": seq["proteinChain"]["count"]
})
elif "dnaSequence" in seq:
components["dna_sequences"].append({
"sequence": seq["dnaSequence"]["sequence"],
"count": seq["dnaSequence"]["count"]
})
elif "ligand" in seq:
components["ligands"].append({
"type": seq["ligand"]["ligand"],
"count": seq["ligand"]["count"]
})
return components
def create_protenix_json(input_data: Dict) -> List[Dict]:
sequences = []
# Process protein chains
for pc in input_data.get("protein_chains", []):
# Check that the row has both columns and the sequence is nonempty.
if len(pc) >= 2 and pc[0].strip():
sequences.append({
"proteinChain": {
"sequence": pc[0].strip(),
"count": int(pc[1]) if pc[1] else 1
}
})
# Process DNA sequences
for dna in input_data.get("dna_sequences", []):
if len(dna) >= 2 and dna[0].strip():
sequences.append({
"dnaSequence": {
"sequence": dna[0].strip(),
"count": int(dna[1]) if dna[1] else 1
}
})
# Process RNA sequences
for rna in input_data.get("rna_sequences", []):
if len(rna) >= 2 and rna[0].strip():
sequences.append({
"rnaSequence": {
"sequence": rna[0].strip(),
"count": int(rna[1]) if rna[1] else 1
}
})
# Process ligands
for lig in input_data.get("ligands", []):
if len(lig) >= 2 and lig[0].strip():
sequences.append({
"ligand": {
"ligand": lig[0].strip(),
"count": int(lig[1]) if lig[1] else 1
}
})
return [{
"sequences": sequences,
"name": input_data.get("complex_name")+f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:3]}"
}]
def update_json(complex_name, protein_chains, dna_sequences, rna_sequences, ligands):
sequences_list = []
# Process protein chains (DataFrame with headers: ["Sequence", "Count"])
if protein_chains:
for row in protein_chains:
# Check if the row is valid and non-empty
if row and len(row) >= 2 and row[0]:
sequences_list.append({
"proteinChain": {
"sequence": row[0],
"count": row[1]
}
})
# Process DNA sequences
if dna_sequences:
for row in dna_sequences:
if row and len(row) >= 2 and row[0]:
sequences_list.append({
"dnaSequence": {
"sequence": row[0],
"count": row[1]
}
})
# Process RNA sequences
if rna_sequences:
for row in rna_sequences:
if row and len(row) >= 2 and row[0]:
sequences_list.append({
"rnaSequence": {
"sequence": row[0],
"count": row[1]
}
})
# Process ligands (DataFrame with headers: ["Ligand Type", "Count"])
if ligands:
for row in ligands:
if row and len(row) >= 2 and row[0]:
sequences_list.append({
"ligand": {
"ligand": row[0],
"count": row[1]
}
})
return {
"sequences": sequences_list,
"name": complex_name
}
#@torch.inference_mode()
@spaces.GPU(duration=180) # Specify a duration to avoid timeout
def predict_structure(input_collector: dict):
#first initialize runner
runner = InferenceRunner(configs)
"""Handle both input types"""
os.makedirs("./output", exist_ok=True)
# Generate random filename with timestamp
random_name = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}"
save_path = os.path.join("./output", f"{random_name}.json")
print(input_collector)
# Handle JSON input
if "json" in input_collector:
# Handle different input types
if isinstance(input_collector["json"], str): # Example JSON case (file path)
input_data = json.load(open(input_collector["json"]))
elif hasattr(input_collector["json"], "name"): # File upload case
input_data = json.load(open(input_collector["json"].name))
else: # Direct JSON data case
input_data = input_collector["json"]
else: # Manual input case
input_data = create_protenix_json(input_collector["data"])
with open(save_path, "w") as f:
json.dump(input_data, f, indent=2)
if input_data==example_json and input_collector['watermark']==True:
configs.saved_path = './output/example_output/'
else:
# run msa
json_file = update_infer_json(save_path, './output', True)
# Run prediction
configs.input_json_path = json_file
configs.watermark = input_collector['watermark']
configs.saved_path = os.path.join("./output/", random_name)
infer_predict(runner, configs)
#saved_path = os.path.join('./output', f"{sample_name}", f"seed_{seed}", 'predictions')
# Generate visualizations
pred_loader = PredictionLoader(os.path.join(configs.saved_path, 'predictions'))
view3d, cif_path = plot_3d(pred_loader=pred_loader)
if configs.watermark:
pred_loader = PredictionLoader(os.path.join(configs.saved_path, 'predictions_orig'))
view3d_orig, _ = plot_3d(pred_loader=pred_loader)
align_pdb_files(view3d, view3d_orig)
view3d = [view3d, view3d_orig]
plot_best_confidence_measure(os.path.join(configs.saved_path, 'predictions'))
confidence_img_path = os.path.join(os.path.join(configs.saved_path, 'predictions'), "best_sample_confidence.png")
return view3d, confidence_img_path, cif_path
logger = logging.getLogger(__name__)
LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
logging.basicConfig(
format=LOG_FORMAT,
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
filemode="w",
)
configs_base["use_deepspeed_evo_attention"] = (
os.environ.get("USE_DEEPSPEED_EVO_ATTTENTION", False) == "False"
)
arg_str = "--seeds 101 --dump_dir ./output --input_json_path ./examples/example.json --model.N_cycle 10 --sample_diffusion.N_sample 5 --sample_diffusion.N_step 200 "
configs = {**configs_base, **{"data": data_configs}, **inference_configs}
configs = parse_configs(
configs=configs,
arg_str=arg_str,
fill_required_with_null=True,
)
configs.load_checkpoint_path='./checkpoint.pt'
download_infercence_cache()
configs.use_deepspeed_evo_attention=False
add_watermark = gr.Checkbox(label="Add Watermark", value=True)
add_watermark1 = gr.Checkbox(label="Add Watermark", value=True)
with gr.Blocks(title="FoldMark", css=custom_css) as demo:
with gr.Row():
# Use a Column to align the logo and title horizontally
gr.Image(value="./assets/foldmark_head.png", elem_id="logo", label="Logo", height=150, show_label=False)
with gr.Tab("Structure Predictor (JSON Upload)"):
# First create the upload component
json_upload = gr.File(label="Upload JSON", file_types=[".json"])
# Then create the example component that references it
gr.Examples(
examples=[[EXAMPLE_PATH]],
inputs=[json_upload],
label="Click to use example JSON:",
examples_per_page=1
)
# Rest of the components
upload_name = gr.Textbox(label="Complex Name (optional)")
upload_output = gr.JSON(label="Parsed Components")
json_upload.upload(
fn=lambda f: parse_json_input(json.load(open(f.name))),
inputs=json_upload,
outputs=upload_output
)
# Shared prediction components
with gr.Row():
add_watermark.render()
submit_btn = gr.Button("Predict Structure", variant="primary")
#structure_view = gr.HTML(label="3D Visualization")
with gr.Row():
view3d = Molecule3D(label="3D Visualization(Gray: Unwatermarked; Cyan: Watermarked)", reps=reps)
# legend = gr.Markdown("""
# **Color Legend:**
# - <span style="color:grey">Gray: Unwatermarked Structure</span>
# - <span style="color:cyan">Cyan: Watermarked Structure</span>
# """)
legend = gr.HTML("""
<div>
<strong>Color Legend:</strong><br>
- <span style="color:grey;">Gray: Unwatermarked Structure</span><br>
- <span style="color:cyan;">Cyan: Watermarked Structure</span>
</div>
""")
with gr.Row():
cif_file = gr.File(label="Download CIF File")
with gr.Row():
confidence_plot_image = gr.Image(label="Confidence Measures")
input_collector = gr.JSON(visible=False)
# Map inputs to a dictionary
submit_btn.click(
fn=lambda j, w: {"json": j, "watermark": w},
inputs=[json_upload, add_watermark],
outputs=input_collector
).then(
fn=predict_structure,
inputs=input_collector,
outputs=[view3d, confidence_plot_image, cif_file]
)
gr.Markdown("""
The example of the uploaded json file for structure prediction.
<pre>
[{
"sequences": [
{
"proteinChain": {
"sequence": "MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH",
"count": 2
}
},
{
"dnaSequence": {
"sequence": "CTAGGTAACATTACTCGCG",
"count": 2
}
},
{
"dnaSequence": {
"sequence": "GCGAGTAATGTTAC",
"count": 2
}
},
{
"ligand": {
"ligand": "CCD_PCG",
"count": 2
}
}
],
"name": "7pzb"
}]
</pre>
""")
with gr.Tab("Structure Predictor (Manual Input)"):
with gr.Row():
complex_name = gr.Textbox(label="Complex Name")
# Replace gr.Group with gr.Accordion
with gr.Accordion(label="Protein Chains", open=True):
protein_chains = gr.Dataframe(
headers=["Sequence", "Count"],
datatype=["str", "number"],
row_count=1,
col_count=(2, "fixed"),
type="array"
)
# Repeat for other groups
with gr.Accordion(label="DNA Sequences (A T G C)", open=True):
dna_sequences = gr.Dataframe(
headers=["Sequence", "Count"],
datatype=["str", "number"],
row_count=1,
type="array"
)
with gr.Accordion(label="RNA Sequences (A U G C)", open=True):
rna_sequences = gr.Dataframe(
headers=["Sequence", "Count"],
datatype=["str", "number"],
row_count=1,
type="array"
)
with gr.Accordion(label="Ligands", open=True):
ligands = gr.Dataframe(
headers=["Ligand Type", "Count"],
datatype=["str", "number"],
row_count=1,
type="array"
)
manual_output = gr.JSON(label="Generated JSON")
# Attach a change event to all widgets so that any change updates the JSON output.
for widget in [complex_name, protein_chains, dna_sequences, rna_sequences, ligands]:
widget.change(
fn=update_json,
inputs=[complex_name, protein_chains, dna_sequences, rna_sequences, ligands],
outputs=manual_output
)
# Shared prediction components
with gr.Row():
add_watermark1.render()
submit_btn = gr.Button("Predict Structure", variant="primary")
#structure_view = gr.HTML(label="3D Visualization")
with gr.Row():
view3d = Molecule3D(label="3D Visualization (Gray: Unwatermarked; Cyan: Watermarked)", reps=reps)
with gr.Row():
cif_file = gr.File(label="Download CIF File")
with gr.Row():
confidence_plot_image = gr.Image(label="Confidence Measures")
input_collector = gr.JSON(visible=False)
# Map inputs to a dictionary
submit_btn.click(
fn=lambda c, p, d, r, l, w: {"data": {"complex_name": c, "protein_chains": p, "dna_sequences": d, "rna_sequences": r, "ligands": l}, "watermark": w},
inputs=[complex_name, protein_chains, dna_sequences, rna_sequences, ligands, add_watermark1],
outputs=input_collector
).then(
fn=predict_structure,
inputs=input_collector,
outputs=[view3d, confidence_plot_image, cif_file]
)
@spaces.GPU(duration=120)
def is_watermarked(file):
#first initialize runner
runner = InferenceRunner(configs)
# Generate a unique subdirectory and filename
unique_id = str(uuid.uuid4().hex[:8])
subdir = os.path.join('./output', unique_id)
os.makedirs(subdir, exist_ok=True)
filename = f"{unique_id}.cif"
file_path = os.path.join(subdir, filename)
# Save the uploaded file to the new location
shutil.copy(file.name, file_path)
#just for fast demonstration, otherwise it takes around 100 seconds
if '7r6r_watermarked' in file.name:
result=True
elif '7pzb_unwatermarked' in file.name:
result=False
else:
# Call your processing functions
configs.process_success = process_data(subdir)
configs.subdir = subdir
result = infer_detect(runner, configs)
# This function should return 'Watermarked' or 'Not Watermarked'
temp_pdb_path = convert_cif_to_pdb(file_path)
if result==False:
return "Not Watermarked", temp_pdb_path
else:
return "Watermarked", temp_pdb_path
with gr.Tab("Watermark Detector"):
# First create the upload component
cif_upload = gr.File(label="Upload .cif", file_types=["..cif"])
with gr.Row():
cif_3d_view = Molecule3D(label="3D Visualization of Input", reps=reps)
# Prediction output
prediction_output = gr.Textbox(label="Prediction")
# Define the interaction
cif_upload.change(is_watermarked, inputs=cif_upload, outputs=[prediction_output, cif_3d_view])
# Example files
example_files = [
"./examples/7r6r_watermarked.cif",
"./examples/7pzb_unwatermarked.cif"
]
gr.Examples(examples=example_files, inputs=cif_upload)
if __name__ == "__main__":
demo.launch(share=True) |