File size: 5,282 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
## MSA data pipeline
If you download our released wwPDB dataset as in [training.md](./training.md), the mmcif_msa [450G] dir has the following directory structure.
```bash
βββ seq_to_pdb_index.json [45M] # sequence to integers mapping file
βββ mmcif_msa [450G] # msa files
βββ 0
βββ uniref100_hits.a3m
βββ mmseqs_other_hits.a3m
βββ 1
βββ uniref100_hits.a3m
βββ mmseqs_other_hits.a3m
βββ 2
βββ uniref100_hits.a3m
βββ mmseqs_other_hits.a3m
...
βββ 157201
βββ uniref100_hits.a3m
βββ mmseqs_other_hits.a3m
```
Each integer in the first-level directory under mmcif_msa (for example, 0, 1, 2, and 157201) represents a unique protein sequence. The key of `seq_to_pdb_index.json` is the unique protein sequence, and the value is the integer corresponding to the first-level subdirectory of mmcif_msa mentioned above.
This document is used to provide the steps to convert the MSA obtained from colabfold into the Protenix training format.
### Steps to get your own MSA data for training
#### Step1: get input protein sequence
Run the following command:
```python
python3 scripts/msa/step1-get_prot_seq.py
```
you will get outputs in `scripts/msa/data/pdb_seqs` dir. The result dir is as follows,
```bash
βββ pdb_index_to_seq.json # mapping integers to sequences
βββ seq_to_pdb_index.json # mapping sequences to integers identifiers when saving MSA, This file is required in training for finding local MSA path from sequence
βββ pdb_seq.fasta # Input of MSA
βββ pdb_seq.csv # Intermediate Files
βββ seq_to_pdb_id_entity_id.json # Intermediate Files
```
#### Step2: run msa search
We give detailed environment configuration and search commands in
```python
scripts/msa/step2-get_msa.ipynb
```
The searched MSA is in `scripts/msa/data/mmcif_msa_initial`, The result dir is as follows,
```bash
βββ 0.a3m
βββ 1.a3m
βββ 2.a3m
βββ 3.a3m
βββ pdb70_220313_db.m8
βββ uniref_tax.m8 # record Taxonomy ID which is used by MSA Pairing
```
#### Steps3: MSA Post-Processing
The overall solution is to search the MSA containing taxonomy information only once for the unique sequence, and pair it according to the species information of each MSA.
For MSA Post-Processing, Taxonomy ID from UniRef30 DB is added to MSAs and MSAs is split into `uniref100_hits.a3m` and `mmseqs_other_hits.a3m`, which correspond to `pairing.a3m` and `non_pairing.a3m` in inference stage respectively.
You can run:
```python
python3 scripts/msa/step3-uniref_add_taxid.py
python3 scripts/msa/step4-split_msa_to_uniref_and_others.py
```
The final pairing and non_pairing MSAs in `scripts/msa/data/mmcif_msa` is as follows:
```
>query
GPTHRFVQKVEEMVQNHMTYSLQDVGGDANWQLVVEEGEMKVYRREVEENGIVLDPLKATHAVKGVTGHEVCNYFWNVDVRNDWETTIENFHVVETLADNAIIIYQTHKRVWPASQRDVLYLSVIRKIPALTENDPETWIVCNFSVDHDSAPLNNRCVRAKINVAMICQTLVSPPEGNQEISRDNILCKITYVANVNPGGWAPASVLRAVAKREYPKFLKRFTSYVQEKTAGKPILF
>UniRef100_A0A0S7JZT1_188132/ 246 0.897 6.614E-70 2 236 237 97 331 332
--THRFADKVEEMVQNHMTYSLQDVGGDANWQLVIEEGEMKVYRREVEENGIVLDPLKATHAVKGVTGHEVCHYFWDTDVRNDWETTIDNFNVVETLSDNAIIVYQTHKRVWPASQRDILFLSAIRKILAKNENDPDTWLVCNFSVDHDKAPPTNRCVRAKINVAMICQTLVSPPEGDKEISRDNILCKITYVANVNPGGWAPASVLRAVAKREYPKFLKRFTSYVQEKTAGNPILF
>UniRef100_A0A4W6GBN4_8187/ 246 0.893 9.059E-70 2 236 237 373 607 608
--THRFANKVEEMVQNHMTYSLQDVGGDANWQLVIEEGEMKVYRREVEENGIVLDPLKATHSVKGVTGHEVCHYFWDTDVRMDWETTIENFNVVEKLSENAIIVYQTHKRVWPASQRDVLYLSAIRKIMATNENDPDTWLVCNFSVDHNNAPPTNRCVRAKINVAMICQTLVSPPEGDKEISRDNILCKITYVANVNPGGWAPASVLRAVAKREYPKFLKRFTSYVQEKTAGKPILF
```
```
>query
MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH
>MGYP001165762451 218 0.325 1.019E-59 5 230 244 3 228 230
-----DKVEFLKGVPLFSELPEAHLQSLGELLIERSYRRGATIFFEGDPGDALYIVRSGIVKISRVAEDGREKTLAFLGKGEPFGEMALIDGGPRSAIAQALEATSLYALHRADFLAALTENPALSLGVIKVLSARLQQANAQLMDLVFRDVRGRVAQALLDLARR-HGVPLTNGRMISVKLTHQEIANLVGTARETVSRTFAELQDSGIIRIeGRNIVLLDAAQLEGYAAG-------------
>A0A160T8V6 218 0.285 1.019E-59 0 227 244 0 229 237
MPTTRDsnAVQALQVVPFFANLPEDHVAALAKALVPRRFSPGQVIFHLGDPGGLLYLISRGKIKISHTTSDGQEVVLAILGPGDFFGEMALIDDAPRSATAITLEPSETWTLHREEFIQYLTDNPEFALHVLKTLARHIRRLNTQLADIFFLDLPGRLARTLLNLADQ-YGRRAADGTIIDLSLTQTDLAEMTGATRVSINKALGRFRRAGWIQvTGRQVTVLDRAALEAL----------------
>AP58_3_1055460.scaffolds.fasta_scaffold1119545_2 216 0.304 3.581E-59 10 225 244 5 221 226
----------LSRVPLFAELPPERIHELAQSVRRRTYHRGETIFHKGDPGNGLYIIAAGQVKIVLPSEMGEEAMLAVLEGGEFFGELALFDGLPRSATVVAVQNAEVLVLHRDDFMSFVGRNPEVVSALFAALSRRLRDADEMIEDAIFLDVPGRLAKRLLDLAEKHGRAEEKGGVAIDLKLTQQDLAAMVGATRESVNKHLGWMRDHGLIQLDRqRIVILKPDDLR------------------
```
### Format of MSA
In `uniref100_hits.a3m`(training stage) or `pairing.a3m`(inference stage), the header must starts with the following format, which we use for pairing:
```
>UniRef100_{hitname}_{taxonomyid}/
```
we also provide a pipeline of local Colabfold_search to Generate Protenix-Compatible MSAs in [colabfold_compatiable_msa.md](./colabfold_compatiable_msa.md). |