File size: 14,431 Bytes
89c0b51 287a06f 89c0b51 287a06f 89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from collections import defaultdict
from pathlib import Path
from typing import Any, Optional, Union
import biotite.structure.io as strucio
import numpy as np
import pandas as pd
import torch
from biotite.structure import AtomArray
from protenix.data.msa_featurizer import MSAFeaturizer
from protenix.data.parser import DistillationMMCIFParser, MMCIFParser
from protenix.data.tokenizer import AtomArrayTokenizer, TokenArray
from protenix.utils.cropping import CropData
from protenix.utils.file_io import load_gzip_pickle
torch.multiprocessing.set_sharing_strategy("file_system")
class DataPipeline(object):
"""
DataPipeline class provides static methods to handle various data processing tasks related to bioassembly structures.
"""
@staticmethod
def get_data_from_mmcif(
mmcif: Union[str, Path],
pdb_cluster_file: Union[str, Path, None] = None,
dataset: str = "WeightedPDB",
) -> tuple[list[dict[str, Any]], dict[str, Any]]:
"""
Get raw data from mmcif with tokenizer and a list of chains and interfaces for sampling.
Args:
mmcif (Union[str, Path]): The raw mmcif file.
pdb_cluster_file (Union[str, Path, None], optional): Cluster info txt file. Defaults to None.
dataset (str, optional): The dataset type, either "WeightedPDB" or "Distillation". Defaults to "WeightedPDB".
Returns:
tuple[list[dict[str, Any]], dict[str, Any]]:
sample_indices_list (list[dict[str, Any]]): The sample indices list (each one is a chain or an interface).
bioassembly_dict (dict[str, Any]): The bioassembly dict with sequence, atom_array, and token_array.
"""
#try:
if dataset == "WeightedPDB":
parser = MMCIFParser(mmcif_file=mmcif)
bioassembly_dict = parser.get_bioassembly()
elif dataset == "Distillation":
parser = DistillationMMCIFParser(mmcif_file=mmcif)
bioassembly_dict = parser.get_structure_dict()
else:
raise NotImplementedError(
'Unsupported "dataset", please input either "WeightedPDB" or "Distillation".'
)
sample_indices_list = parser.make_indices(
bioassembly_dict=bioassembly_dict, pdb_cluster_file=pdb_cluster_file
)
if len(sample_indices_list) == 0:
# empty indices and AtomArray
return [], bioassembly_dict
atom_array = bioassembly_dict["atom_array"]
atom_array.set_annotation(
"resolution", [parser.resolution] * len(atom_array)
)
tokenizer = AtomArrayTokenizer(atom_array)
token_array = tokenizer.get_token_array()
bioassembly_dict["msa_features"] = None
bioassembly_dict["template_features"] = None
bioassembly_dict["token_array"] = token_array
return sample_indices_list, bioassembly_dict
# except Exception as e:
# logging.warning("Gen data failed for %s due to %s", mmcif, e)
# return [], {}
@staticmethod
def get_label_entity_id_to_asym_id_int(atom_array: AtomArray) -> dict[str, int]:
"""
Get a dictionary that associates each label_entity_id with its corresponding asym_id_int.
Args:
atom_array (AtomArray): AtomArray object
Returns:
dict[str, int]: label_entity_id to its asym_id_int
"""
entity_to_asym_id = defaultdict(set)
for atom in atom_array:
entity_id = atom.label_entity_id
entity_to_asym_id[entity_id].add(atom.asym_id_int)
return entity_to_asym_id
@staticmethod
def get_data_bioassembly(
bioassembly_dict_fpath: Union[str, Path],
) -> dict[str, Any]:
"""
Get the bioassembly dict.
Args:
bioassembly_dict_fpath (Union[str, Path]): The path to the bioassembly dictionary file.
Returns:
dict[str, Any]: The bioassembly dict with sequence, atom_array and token_array.
Raises:
AssertionError: If the bioassembly dictionary file does not exist.
"""
assert os.path.exists(
bioassembly_dict_fpath
), f"File not exists {bioassembly_dict_fpath}"
bioassembly_dict = load_gzip_pickle(bioassembly_dict_fpath)
return bioassembly_dict
@staticmethod
def _map_ref_chain(
one_sample: pd.Series, bioassembly_dict: dict[str, Any]
) -> list[int]:
"""
Map the chain or interface chain_x_id to the reference chain asym_id.
Args:
one_sample (pd.Series): A dict of one chain or interface from indices list.
bioassembly_dict (dict[str, Any]): The bioassembly dict with sequence, atom_array and token_array.
Returns:
list[int]: A list of asym_id_lnt of the chosen chain or interface, length 1 or 2.
"""
atom_array = bioassembly_dict["atom_array"]
ref_chain_indices = []
for chain_id_field in ["chain_1_id", "chain_2_id"]:
chain_id = one_sample[chain_id_field]
assert np.isin(
chain_id, np.unique(atom_array.chain_id)
), f"PDB {bioassembly_dict['pdb_id']} {chain_id_field}:{chain_id} not in atom_array"
chain_asym_id = atom_array[atom_array.chain_id == chain_id].asym_id_int[0]
ref_chain_indices.append(chain_asym_id)
if one_sample["type"] == "chain":
break
return ref_chain_indices
@staticmethod
def get_msa_raw_features(
bioassembly_dict: dict[str, Any],
selected_indices: np.ndarray,
msa_featurizer: Optional[MSAFeaturizer],
) -> Optional[dict[str, np.ndarray]]:
"""
Get tokenized MSA features of the bioassembly
Args:
bioassembly_dict (Mapping[str, Any]): The bioassembly dict with sequence, atom_array and token_array.
selected_indices (torch.Tensor): Cropped token indices.
msa_featurizer (MSAFeaturizer): MSAFeaturizer instance.
Returns:
Optional[dict[str, np.ndarray]]: The tokenized MSA features of the bioassembly.
"""
if msa_featurizer is None:
return None
entity_to_asym_id_int = dict(
DataPipeline.get_label_entity_id_to_asym_id_int(
bioassembly_dict["atom_array"]
)
)
msa_feats = msa_featurizer(
bioassembly_dict=bioassembly_dict,
selected_indices=selected_indices,
entity_to_asym_id_int=entity_to_asym_id_int,
)
return msa_feats
@staticmethod
def get_template_raw_features(
bioassembly_dict: dict[str, Any],
selected_indices: np.ndarray,
template_featurizer: None,
) -> Optional[dict[str, np.ndarray]]:
"""
Get tokenized template features of the bioassembly.
Args:
bioassembly_dict (dict[str, Any]): The bioassembly dict with sequence, atom_array and token_array.
selected_indices (np.ndarray): Cropped token indices.
template_featurizer (None): Placeholder for the template featurizer.
Returns:
Optional[dict[str, np.ndarray]]: The tokenized template features of the bioassembly,
or None if the template featurizer is not provided.
"""
if template_featurizer is None:
return None
entity_to_asym_id_int = dict(
DataPipeline.get_label_entity_id_to_asym_id_int(
bioassembly_dict["atom_array"]
)
)
template_feats = template_featurizer(
bioassembly_dict=bioassembly_dict,
selected_indices=selected_indices,
entity_to_asym_id_int=entity_to_asym_id_int,
)
return template_feats
@staticmethod
def crop(
one_sample: pd.Series,
bioassembly_dict: dict[str, Any],
crop_size: int,
msa_featurizer: Optional[MSAFeaturizer],
template_featurizer: None,
method_weights: list[float] = [0.2, 0.4, 0.4],
contiguous_crop_complete_lig: bool = False,
spatial_crop_complete_lig: bool = False,
drop_last: bool = False,
remove_metal: bool = False,
) -> tuple[str, TokenArray, AtomArray, dict[str, Any], dict[str, Any]]:
"""
Crop data based on the crop size and reference chain indices.
Args:
one_sample (pd.Series): A dict of one chain or interface from indices list.
bioassembly_dict (dict[str, Any]): A dict of bioassembly dict with sequence, atom_array and token_array.
crop_size (int): the crop size.
msa_featurizer (MSAFeaturizer): Default to an empty replacement for msa featurizer.
template_featurizer (None): Placeholder for the template featurizer.
method_weights (list[float]): The weights corresponding to these three cropping methods:
["ContiguousCropping", "SpatialCropping", "SpatialInterfaceCropping"].
contiguous_crop_complete_lig (bool): Whether to crop the complete ligand in ContiguousCropping method.
spatial_crop_complete_lig (bool): Whether to crop the complete ligand in SpatialCropping method.
drop_last (bool): Whether to drop the last fragment in ContiguousCropping.
remove_metal (bool): Whether to remove metal atoms from the crop.
Returns:
tuple[str, TokenArray, AtomArray, dict[str, Any], dict[str, Any]]:
crop_method (str): The crop method.
cropped_token_array (TokenArray): TokenArray after cropping.
cropped_atom_array (AtomArray): AtomArray after cropping.
cropped_msa_features (dict[str, Any]): The cropped msa features.
cropped_template_features (dict[str, Any]): The cropped template features.
"""
if crop_size <= 0:
selected_indices = None
# Prepare msa
msa_features = DataPipeline.get_msa_raw_features(
bioassembly_dict=bioassembly_dict,
selected_indices=selected_indices,
msa_featurizer=msa_featurizer,
)
# Prepare template
template_features = DataPipeline.get_template_raw_features(
bioassembly_dict=bioassembly_dict,
selected_indices=selected_indices,
template_featurizer=template_featurizer,
)
return (
"no_crop",
bioassembly_dict["token_array"],
bioassembly_dict["atom_array"],
msa_features or {},
template_features or {},
-1,
)
ref_chain_indices = DataPipeline._map_ref_chain(
one_sample=one_sample, bioassembly_dict=bioassembly_dict
)
crop = CropData(
crop_size=crop_size,
ref_chain_indices=ref_chain_indices,
token_array=bioassembly_dict["token_array"],
atom_array=bioassembly_dict["atom_array"],
method_weights=method_weights,
contiguous_crop_complete_lig=contiguous_crop_complete_lig,
spatial_crop_complete_lig=spatial_crop_complete_lig,
drop_last=drop_last,
remove_metal=remove_metal,
)
# Get crop method
crop_method = crop.random_crop_method()
# Get crop indices based crop method
selected_indices, reference_token_index = crop.get_crop_indices(
crop_method=crop_method
)
# Prepare msa
msa_features = DataPipeline.get_msa_raw_features(
bioassembly_dict=bioassembly_dict,
selected_indices=selected_indices,
msa_featurizer=msa_featurizer,
)
# Prepare template
template_features = DataPipeline.get_template_raw_features(
bioassembly_dict=bioassembly_dict,
selected_indices=selected_indices,
template_featurizer=template_featurizer,
)
(
cropped_token_array,
cropped_atom_array,
cropped_msa_features,
cropped_template_features,
) = crop.crop_by_indices(
selected_token_indices=selected_indices,
msa_features=msa_features,
template_features=template_features,
)
if crop_method == "ContiguousCropping":
resovled_atom_num = cropped_atom_array.is_resolved.sum()
# The criterion of “more than 4 atoms” is chosen arbitrarily.
assert (
resovled_atom_num > 4
), f"{resovled_atom_num=} <= 4 after ContiguousCropping"
return (
crop_method,
cropped_token_array,
cropped_atom_array,
cropped_msa_features,
cropped_template_features,
reference_token_index,
)
@staticmethod
def save_atoms_to_cif(
output_cif_file: str, atom_array: AtomArray, include_bonds: bool = False
) -> None:
"""
Save atom array data to a CIF file.
Args:
output_cif_file (str): The output path for saving atom array in cif
atom_array (AtomArray): The atom array to be saved
include_bonds (bool): Whether to include bond information in the CIF file. Default is False.
"""
strucio.save_structure(
file_path=output_cif_file,
array=atom_array,
data_block=os.path.basename(output_cif_file).replace(".cif", ""),
include_bonds=include_bonds,
)
|