File size: 13,293 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Iterator, Optional, Sequence

import torch
import torch.distributed as dist
from ml_collections.config_dict import ConfigDict
from torch.utils.data import DataLoader, DistributedSampler, Sampler

from protenix.data.dataset import Dataset, get_datasets
from protenix.utils.logger import get_logger

logger = get_logger(__name__)


class WeightedSampler(Sampler):
    """
    A weighted sampler for single node.
    """

    def __init__(
        self,
        weights: Sequence[float],
        num_samples: int,
        replacement: bool,
        seed: int = 0,
    ):
        """
        Args:
            weights (list or numpy array): A list or numpy array of weights.
            num_samples (int): The number of samples to be drawn.
            replacement (bool): Whether sampling is done with replacement.
            seed (int): The seed for the random number generator.
        """
        self.weights = torch.as_tensor(weights, dtype=torch.double)
        self.replacement = replacement
        self.seed = seed
        self.epoch = 0
        self.num_samples = num_samples

    def __iter__(self) -> Iterator[int]:
        """
        Generates an iterator over the sampled indices.

        This method uses a random number generator to sample indices based on the provided weights.
        The generator is seeded with the current seed and epoch to ensure reproducibility.

        Returns:
            iter: An iterator over the sampled indices.
        """
        g = torch.Generator()
        g.manual_seed(self.seed + self.epoch)
        indices = torch.multinomial(
            self.weights, self.num_samples, self.replacement, generator=g
        ).tolist()
        return iter(indices)

    def __len__(self) -> int:
        return self.num_samples

    def set_epoch(self, epoch: int) -> None:
        self.epoch = epoch


class DistributedWeightedSampler(DistributedSampler):
    """
    A distributed weighted sampler for multiple nodes.
    """

    def __init__(
        self,
        dataset: Dataset,
        weights: Sequence[float],
        num_samples: int,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
        replacement: bool = True,
        seed: int = 0,
    ):
        """
        Args:
            dataset (Dataset): The dataset to be loaded.
            weights (list): The weights associated with the dataset.
            num_samples (int): The total number of samples to be drawn.
            num_replicas (int, optional): The number of replicas to use for distributed sampling. Defaults to None.
            rank (int, optional): The rank of the current process in a distributed environment. Defaults to None.
            replacement (bool, optional): Whether to sample with replacement. Defaults to True.
            seed (int, optional): The random seed for reproducibility. Defaults to 0.
        """
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=False)
        self.weights = torch.as_tensor(weights, dtype=torch.double)
        self.replacement = replacement
        self.seed = seed
        self.epoch = 0
        self.num_samples = num_samples

        self.num_samples_per_replica = int(
            math.ceil(self.num_samples / self.num_replicas)
        )
        self.total_size = self.num_samples_per_replica * self.num_replicas

    def __iter__(self) -> Iterator[int]:
        """
        Generates an iterator over the sampled indices for the current process in a distributed environment.

        This method uses a random number generator to sample indices based on the provided weights.
        The generator is seeded with the current seed and epoch to ensure reproducibility.
        The sampled indices are then distributed across the replicas according to the rank of the current process.

        Returns:
            iter: An iterator over the sampled indices for the current process.
        """
        g = torch.Generator()
        g.manual_seed(self.seed + self.epoch)
        indices = torch.multinomial(
            self.weights, self.num_samples, self.replacement, generator=g
        ).tolist()
        indices = indices[self.rank : self.total_size : self.num_replicas]
        return iter(indices)

    def __len__(self) -> int:
        return self.num_samples // self.num_replicas

    def set_epoch(self, epoch: int) -> None:
        self.epoch = epoch


class KeySumBalancedSampler(Sampler):
    def __init__(
        self,
        dataset: Dataset,
        key: str,
        value_scale: float = 1.0,
        seed: Optional[int] = None,
        num_replicas: Optional[int] = None,
        rank: Optional[int] = None,
    ):
        """
        This method initializes the KeySumBalancedSampler.
        It calls the `get_balanced_assignments` method to distribute the dataset indices across workers based on the key sum.

        Args:
            dataset (Dataset): The dataset to sample from.
            key (str): The key by which data will be balanced (integer value).
            value_scale (float): The multiplier of key value when computing the worker assignment weight
            num_replicas (int, optional): Number of processes participating in distributed training.
            rank (int, optional): Rank of the current process within num_replicas.
        """
        self.dataset = dataset
        self.key = key
        self.value_scale = value_scale
        self.seed = seed
        self.num_replicas = num_replicas or dist.get_world_size()
        self.rank = rank or dist.get_rank()

        # Get indices for this process after balancing by key sum
        worker_assignments = self.get_balanced_assignments()
        self.indices = worker_assignments[self.rank]

    def get_balanced_assignments(self):
        """
        Distribute dataset indices across workers such that the sum of key values
        assigned to each worker is as balanced as possible.
        """
        if self.seed is not None:
            # deterministically shuffle based on seed
            g = torch.Generator()
            g.manual_seed(self.seed)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = list(range(len(self.dataset)))

        # pad for len(dataset) to self.num_replicas if len(dataset) < self.num_replicas
        while len(indices) < self.num_replicas:
            indices += indices[: (self.num_replicas - len(indices))]

        if isinstance(self.dataset.indices_list, list):
            # e.g. recentPDB test set
            dataset_values = [
                x[self.key].astype(int)[0] for x in self.dataset.indices_list
            ]
        else:
            # e.g. posebuster test set
            dataset_values = self.dataset.indices_list[self.key].astype(int).to_numpy()

        # Sort indices by key value
        key_value_pairs = [(idx, dataset_values[idx]) for idx in indices]
        key_value_pairs.sort(key=lambda x: x[1], reverse=True)

        # Calculate the target number of samples per worker
        num_samples_per_worker = len(self.dataset) // self.num_replicas

        # Initialize containers for worker assignments and their current key sum
        worker_assignments = [[] for _ in range(self.num_replicas)]
        worker_sums = [0] * self.num_replicas
        total_samples = num_samples_per_worker * self.num_replicas

        # Distribute samples using a greedy strategy to balance the key sum
        for idx, key_value in key_value_pairs[:total_samples]:
            # Find the worker with the smallest sum that hasn't exceeded its target sample count
            min_worker = min(
                range(self.num_replicas),
                key=lambda i: (
                    worker_sums[i]
                    if len(worker_assignments[i]) < num_samples_per_worker
                    else float("inf")
                ),
            )
            worker_assignments[min_worker].append(idx)
            worker_sums[min_worker] += key_value**2

        # Fix any discrepancies in the number of samples
        all_indices = [idx for idx, _ in key_value_pairs]

        # Assign remaining samples if the dataset isn't divisible perfectly
        if len(all_indices) > total_samples:
            for i in range(len(all_indices) - total_samples):
                worker_assignments[i % self.num_replicas].append(
                    all_indices[total_samples + i]
                )

        # Return the indices assigned to the current worker
        return worker_assignments

    def __iter__(self):
        return iter(self.indices)

    def __len__(self):
        return len(self.indices)


class IterDataLoader(DataLoader):
    """
    Iterative dataloader for single node.
    """

    def __init__(self, *args, **kwargs):
        super(IterDataLoader, self).__init__(*args, **kwargs)
        assert self.sampler is not None
        self.counter = 0

    def __iter__(self):
        self.sampler.set_epoch(self.counter)
        self.counter += 1
        _iterator = super(IterDataLoader, self).__iter__()
        return _iterator


class DistributedDataLoader(DataLoader):
    """
    Distributed dataloader for multiple nodes.
    """

    def __init__(
        self,
        dataset: Dataset,
        batch_size: int,
        num_workers: int = 0,
        collate_fn=None,
        seed: int = 42,
        drop_last: bool = True,
        shuffle: bool = True,
        sampler: Sampler = None,
    ):
        if sampler is not None:
            self.sampler = sampler
        else:
            self.sampler = DistributedSampler(
                dataset, shuffle=shuffle, seed=seed, drop_last=drop_last
            )

        super(DistributedDataLoader, self).__init__(
            dataset=dataset,
            batch_size=batch_size,
            num_workers=num_workers,
            sampler=self.sampler,
            shuffle=False,
            collate_fn=collate_fn,
        )
        self.counter = 0

    def __iter__(self):
        self.sampler.set_epoch(self.counter)
        self.counter += 1
        _iterator = super(DistributedDataLoader, self).__iter__()
        return _iterator


def get_dataloaders(
    configs: ConfigDict, world_size: int, seed: int, error_dir: Optional[str] = None
):
    """
    Generate data loaders for training and testing based on the given configurations and seed.

    Args:
        configs (ConfigDict): An object containing the data configuration information.
        world_size (int): The number of processes in the distributed environment.
        seed (int): The random seed used for data sampling.
        error_dir (str, optional): The directory to store error information. Defaults to None.

    Returns:
        tuple: A tuple containing the training data loader and a dictionary of testing data loaders.

    """
    train_dataset, test_datasets = get_datasets(configs, error_dir)
    if world_size > 1:
        train_sampler = DistributedWeightedSampler(
            train_dataset,
            train_dataset.merged_datapoint_weights,
            num_samples=configs.data.epoch_size,
            replacement=True,
            seed=seed,
        )
        train_dl = DistributedDataLoader(
            dataset=train_dataset,
            batch_size=1,
            shuffle=False,
            num_workers=configs.data.num_dl_workers,
            collate_fn=lambda batch: batch[0],
            sampler=train_sampler,
        )
    else:

        train_sampler = WeightedSampler(
            weights=train_dataset.merged_datapoint_weights,
            num_samples=configs.data.epoch_size,
            replacement=True,
            seed=seed,
        )
        train_dl = IterDataLoader(
            dataset=train_dataset,
            batch_size=1,
            shuffle=False,
            num_workers=configs.data.num_dl_workers,
            collate_fn=lambda batch: batch[0],
            sampler=train_sampler,
        )

    test_dls = {}
    test_dataset_sizes = {}
    for test_name, test_dataset in test_datasets.items():
        test_dataset_sizes[test_name] = len(test_dataset)
        test_sampler = (
            KeySumBalancedSampler(test_dataset, key="num_tokens", seed=configs.seed)
            if world_size > 1
            else None
        )
        test_dls[test_name] = DataLoader(
            test_dataset,
            batch_size=1,
            shuffle=False,
            num_workers=configs.data.num_dl_workers,
            sampler=test_sampler,
            collate_fn=lambda batch: batch[0],
        )
    logger.info(
        f"train data size: {len(train_dataset)}, test size: {test_dataset_sizes}"
    )
    return train_dl, test_dls