File size: 43,814 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import random
import traceback
from copy import deepcopy
from pathlib import Path
from typing import Any, Callable, Optional, Union

import numpy as np
import pandas as pd
import torch
from biotite.structure.atoms import AtomArray
from ml_collections.config_dict import ConfigDict
from torch.utils.data import Dataset

from protenix.data.constants import EvaluationChainInterface
from protenix.data.data_pipeline import DataPipeline
from protenix.data.featurizer import Featurizer
from protenix.data.msa_featurizer import MSAFeaturizer
from protenix.data.tokenizer import TokenArray
from protenix.data.utils import data_type_transform, make_dummy_feature
from protenix.utils.cropping import CropData
from protenix.utils.file_io import read_indices_csv
from protenix.utils.logger import get_logger
from protenix.utils.torch_utils import dict_to_tensor

logger = get_logger(__name__)


class BaseSingleDataset(Dataset):
    """
    dataset for a single data source
    data = self.__item__(idx)
    return a dict of features and labels, the keys and the shape are defined in protenix.data.utils
    """

    def __init__(
        self,
        mmcif_dir: Union[str, Path],
        bioassembly_dict_dir: Optional[Union[str, Path]],
        indices_fpath: Union[str, Path],
        cropping_configs: dict[str, Any],
        msa_featurizer: Optional[MSAFeaturizer] = None,
        template_featurizer: Optional[Any] = None,
        name: str = None,
        **kwargs,
    ) -> None:
        super(BaseSingleDataset, self).__init__()

        # Configs
        self.mmcif_dir = mmcif_dir
        self.bioassembly_dict_dir = bioassembly_dict_dir
        self.indices_fpath = indices_fpath
        self.cropping_configs = cropping_configs
        self.name = name
        # General dataset configs
        self.ref_pos_augment = kwargs.get("ref_pos_augment", True)
        self.lig_atom_rename = kwargs.get("lig_atom_rename", False)
        self.reassign_continuous_chain_ids = kwargs.get(
            "reassign_continuous_chain_ids", False
        )
        self.shuffle_mols = kwargs.get("shuffle_mols", False)
        self.shuffle_sym_ids = kwargs.get("shuffle_sym_ids", False)

        # Typically used for test sets
        self.find_pocket = kwargs.get("find_pocket", False)
        self.find_all_pockets = kwargs.get("find_all_pockets", False)  # for dev
        self.find_eval_chain_interface = kwargs.get("find_eval_chain_interface", False)
        self.group_by_pdb_id = kwargs.get("group_by_pdb_id", False)  # for test set
        self.sort_by_n_token = kwargs.get("sort_by_n_token", False)

        # Typically used for training set
        self.random_sample_if_failed = kwargs.get("random_sample_if_failed", False)
        self.use_reference_chains_only = kwargs.get("use_reference_chains_only", False)
        self.is_distillation = kwargs.get("is_distillation", False)

        # Configs for data filters
        self.max_n_token = kwargs.get("max_n_token", -1)
        self.pdb_list = kwargs.get("pdb_list", None)
        if len(self.pdb_list) == 0:
            self.pdb_list = None
        # Used for removing rows in the indices list. Column names and excluded values are specified in this dict.
        self.exclusion_dict = kwargs.get("exclusion", {})
        self.limits = kwargs.get(
            "limits", -1
        )  # Limit number of indices rows, mainly for test

        self.error_dir = kwargs.get("error_dir", None)
        if self.error_dir is not None:
            os.makedirs(self.error_dir, exist_ok=True)

        self.msa_featurizer = msa_featurizer
        self.template_featurizer = template_featurizer

        # Read data
        self.indices_list = self.read_indices_list(indices_fpath)

    @staticmethod
    def read_pdb_list(pdb_list: Union[list, str]) -> Optional[list]:
        """
        Reads a list of PDB IDs from a file or directly from a list.

        Args:
            pdb_list: A list of PDB IDs or a file path containing PDB IDs.

        Returns:
            A list of PDB IDs if the input is valid, otherwise None.
        """
        if pdb_list is None:
            return None

        if isinstance(pdb_list, list):
            return pdb_list

        with open(pdb_list, "r") as f:
            pdb_filter_list = []
            for l in f.readlines():
                l = l.strip()
                if l:
                    pdb_filter_list.append(l)
        return pdb_filter_list

    def read_indices_list(self, indices_fpath: Union[str, Path]) -> pd.DataFrame:
        """
        Reads and processes a list of indices from a CSV file.

        Args:
            indices_fpath: Path to the CSV file containing the indices.

        Returns:
            A DataFrame containing the processed indices.
        """
        indices_list = read_indices_csv(indices_fpath)
        num_data = len(indices_list)
        logger.info(f"#Rows in indices list: {num_data}")
        # Filter by pdb_list
        if self.pdb_list is not None:
            pdb_filter_list = set(self.read_pdb_list(pdb_list=self.pdb_list))
            indices_list = indices_list[indices_list["pdb_id"].isin(pdb_filter_list)]
            logger.info(f"[filtered by pdb_list] #Rows: {len(indices_list)}")

        # Filter by max_n_token
        if self.max_n_token > 0:
            valid_mask = indices_list["num_tokens"].astype(int) <= self.max_n_token
            removed_list = indices_list[~valid_mask]
            indices_list = indices_list[valid_mask]
            logger.info(f"[removed] #Rows: {len(removed_list)}")
            logger.info(f"[removed] #PDB: {removed_list['pdb_id'].nunique()}")
            logger.info(
                f"[filtered by n_token ({self.max_n_token})] #Rows: {len(indices_list)}"
            )

        # Filter by exclusion_dict
        for col_name, exclusion_list in self.exclusion_dict.items():
            cols = col_name.split("|")
            exclusion_set = {tuple(excl.split("|")) for excl in exclusion_list}

            def is_valid(row):
                return tuple(row[col] for col in cols) not in exclusion_set

            valid_mask = indices_list.apply(is_valid, axis=1)
            indices_list = indices_list[valid_mask].reset_index(drop=True)
            logger.info(
                f"[Excluded by {col_name} -- {exclusion_list}] #Rows: {len(indices_list)}"
            )
        self.print_data_stats(indices_list)

        # Group by pdb_id
        # A list of dataframe. Each contains one pdb with multiple rows.
        if self.group_by_pdb_id:
            indices_list = [
                df.reset_index() for _, df in indices_list.groupby("pdb_id", sort=True)
            ]

        if self.sort_by_n_token:
            # Sort the dataset in a descending order, so that if OOM it will raise Error at an early stage.
            if self.group_by_pdb_id:
                indices_list = sorted(
                    indices_list,
                    key=lambda df: int(df["num_tokens"].iloc[0]),
                    reverse=True,
                )
            else:
                indices_list = indices_list.sort_values(
                    by="num_tokens", key=lambda x: x.astype(int), ascending=False
                ).reset_index(drop=True)

        if self.find_eval_chain_interface:
            # Remove data that does not contain eval_type in the EvaluationChainInterface list
            if self.group_by_pdb_id:
                indices_list = [
                    df
                    for df in indices_list
                    if len(
                        set(df["eval_type"].to_list()).intersection(
                            set(EvaluationChainInterface)
                        )
                    )
                    > 0
                ]
            else:
                indices_list = indices_list[
                    indices_list["eval_type"].apply(
                        lambda x: x in EvaluationChainInterface
                    )
                ]
        if self.limits > 0 and len(indices_list) > self.limits:
            logger.info(
                f"Limit indices list size from {len(indices_list)} to {self.limits}"
            )
            indices_list = indices_list[: self.limits]
        return indices_list

    def print_data_stats(self, df: pd.DataFrame) -> None:
        """
        Prints statistics about the dataset, including the distribution of molecular group types.

        Args:
            df: A DataFrame containing the indices list.
        """
        if self.name:
            logger.info("-" * 10 + f" Dataset {self.name}" + "-" * 10)
        df["mol_group_type"] = df.apply(
            lambda row: "_".join(
                sorted(
                    [
                        str(row["mol_1_type"]),
                        str(row["mol_2_type"]).replace("nan", "intra"),
                    ]
                )
            ),
            axis=1,
        )

        group_size_dict = dict(df["mol_group_type"].value_counts())
        for i, n_i in group_size_dict.items():
            logger.info(f"{i}: {n_i}/{len(df)}({round(n_i*100/len(df), 2)}%)")

        logger.info("-" * 30)
        if "cluster_id" in df.columns:
            n_cluster = df["cluster_id"].nunique()
            for i in group_size_dict:
                n_i = df[df["mol_group_type"] == i]["cluster_id"].nunique()
                logger.info(f"{i}: {n_i}/{n_cluster}({round(n_i*100/n_cluster, 2)}%)")
            logger.info("-" * 30)

        logger.info(f"Final pdb ids: {len(set(df.pdb_id.tolist()))}")
        logger.info("-" * 30)

    def __len__(self) -> int:
        return len(self.indices_list)

    def save_error_data(self, idx: int, error_message: str) -> None:
        """
        Saves the error data for a specific index to a JSON file in the error directory.

        Args:
            idx: The index of the data sample that caused the error.
            error_message: The error message to be saved.
        """
        if self.error_dir is not None:
            sample_indice = self._get_sample_indice(idx=idx)
            data = sample_indice.to_dict()
            data["error"] = error_message

            filename = f"{sample_indice.pdb_id}-{sample_indice.chain_1_id}-{sample_indice.chain_2_id}.json"
            fpath = os.path.join(self.error_dir, filename)
            if not os.path.exists(fpath):
                with open(fpath, "w") as f:
                    json.dump(data, f)

    def __getitem__(self, idx: int):
        """
        Retrieves a data sample by processing the given index.
        If an error occurs, it attempts to handle it by either saving the error data or randomly sampling another index.

        Args:
            idx: The index of the data sample to retrieve.

        Returns:
            A dictionary containing the processed data sample.
        """
        # Try at most 10 times
        for _ in range(10):
            try:
                data = self.process_one(idx)
                return data
            except Exception as e:
                error_message = f"{e} at idx {idx}:\n{traceback.format_exc()}"
                self.save_error_data(idx, error_message)

                if self.random_sample_if_failed:
                    logger.exception(f"[skip data {idx}] {error_message}")
                    # Random sample an index
                    idx = random.choice(range(len(self.indices_list)))
                    continue
                else:
                    raise Exception(e)
        return data

    def _get_bioassembly_data(
        self, idx: int
    ) -> tuple[list[dict[str, Any]], dict[str, Any]]:
        sample_indice = self._get_sample_indice(idx=idx)
        if self.bioassembly_dict_dir is not None:
            bioassembly_dict_fpath = os.path.join(
                self.bioassembly_dict_dir, sample_indice.pdb_id + ".pkl.gz"
            )
        else:
            bioassembly_dict_fpath = None

        bioassembly_dict = DataPipeline.get_data_bioassembly(
            bioassembly_dict_fpath=bioassembly_dict_fpath
        )
        bioassembly_dict["pdb_id"] = sample_indice.pdb_id
        return sample_indice, bioassembly_dict, bioassembly_dict_fpath

    @staticmethod
    def _reassign_atom_array_chain_id(atom_array: AtomArray):
        """
        In experiments conducted to observe overfitting effects using training sets,
        the pre-stored AtomArray in the training set may experience issues with discontinuous chain IDs due to filtering.
        Consequently, a temporary patch has been implemented to resolve this issue.

        e.g. 3x6u asym_id_int = [0, 1, 2, ... 18, 20] -> reassigned_asym_id_int [0, 1, 2, ..., 18, 19]
        """

        def _get_contiguous_array(array):
            array_uniq = np.sort(np.unique(array))
            map_dict = {i: idx for idx, i in enumerate(array_uniq)}
            new_array = np.vectorize(map_dict.get)(array)
            return new_array

        atom_array.asym_id_int = _get_contiguous_array(atom_array.asym_id_int)
        atom_array.entity_id_int = _get_contiguous_array(atom_array.entity_id_int)
        atom_array.sym_id_int = _get_contiguous_array(atom_array.sym_id_int)
        return atom_array

    @staticmethod
    def _shuffle_array_based_on_mol_id(token_array: TokenArray, atom_array: AtomArray):
        """
        Shuffle both token_array and atom_array.
        Atoms/tokens with the same mol_id will be shuffled as a integrated component.
        """

        # Get token mol_id
        centre_atom_indices = token_array.get_annotation("centre_atom_index")
        token_mol_id = atom_array[centre_atom_indices].mol_id

        # Get unique molecule IDs and shuffle them in place
        shuffled_mol_ids = np.unique(token_mol_id).copy()
        np.random.shuffle(shuffled_mol_ids)

        # Get shuffled token indices
        original_token_indices = np.arange(len(token_mol_id))
        shuffled_token_indices = []
        for mol_id in shuffled_mol_ids:
            mol_token_indices = original_token_indices[token_mol_id == mol_id]
            shuffled_token_indices.append(mol_token_indices)
        shuffled_token_indices = np.concatenate(shuffled_token_indices)

        # Get shuffled token and atom array
        # Use `CropData.select_by_token_indices` to shuffle safely
        token_array, atom_array, _, _ = CropData.select_by_token_indices(
            token_array=token_array,
            atom_array=atom_array,
            selected_token_indices=shuffled_token_indices,
        )

        return token_array, atom_array

    @staticmethod
    def _assign_random_sym_id(atom_array: AtomArray):
        """
        Assign random sym_id for chains of the same entity_id
        e.g.
        when entity_id = 0
            sym_id_int = [0, 1, 2] -> random_sym_id_int = [2, 0, 1]
        when entity_id = 1
            sym_id_int = [0, 1, 2, 3] -> random_sym_id_int = [3, 0, 1, 2]
        """

        def _shuffle(x):
            x_unique = np.sort(np.unique(x))
            x_shuffled = x_unique.copy()
            np.random.shuffle(x_shuffled)  # shuffle in-place
            map_dict = dict(zip(x_unique, x_shuffled))
            new_x = np.vectorize(map_dict.get)(x)
            return new_x.copy()

        for entity_id in np.unique(atom_array.label_entity_id):
            mask = atom_array.label_entity_id == entity_id
            atom_array.sym_id_int[mask] = _shuffle(atom_array.sym_id_int[mask])
        return atom_array

    def process_one(
        self, idx: int, return_atom_token_array: bool = False
    ) -> dict[str, dict]:
        """
        Processes a single data sample by retrieving bioassembly data, applying various transformations, and cropping the data.
        It then extracts features and labels, and optionally returns the processed atom and token arrays.

        Args:
            idx: The index of the data sample to process.
            return_atom_token_array: Whether to return the processed atom and token arrays.

        Returns:
            A dict containing the input features, labels, basic_info and optionally the processed atom and token arrays.
        """

        sample_indice, bioassembly_dict, bioassembly_dict_fpath = (
            self._get_bioassembly_data(idx=idx)
        )

        if self.use_reference_chains_only:
            # Get the reference chains
            ref_chain_ids = [sample_indice.chain_1_id, sample_indice.chain_2_id]
            if sample_indice.type == "chain":
                ref_chain_ids.pop(-1)
            # Remove other chains from the bioassembly_dict
            # Remove them safely using the crop method
            token_centre_atom_indices = bioassembly_dict["token_array"].get_annotation(
                "centre_atom_index"
            )
            token_chain_id = bioassembly_dict["atom_array"][
                token_centre_atom_indices
            ].chain_id
            is_ref_chain = np.isin(token_chain_id, ref_chain_ids)
            bioassembly_dict["token_array"], bioassembly_dict["atom_array"], _, _ = (
                CropData.select_by_token_indices(
                    token_array=bioassembly_dict["token_array"],
                    atom_array=bioassembly_dict["atom_array"],
                    selected_token_indices=np.arange(len(is_ref_chain))[is_ref_chain],
                )
            )

        if self.shuffle_mols:
            bioassembly_dict["token_array"], bioassembly_dict["atom_array"] = (
                self._shuffle_array_based_on_mol_id(
                    token_array=bioassembly_dict["token_array"],
                    atom_array=bioassembly_dict["atom_array"],
                )
            )

        if self.shuffle_sym_ids:
            bioassembly_dict["atom_array"] = self._assign_random_sym_id(
                bioassembly_dict["atom_array"]
            )

        if self.reassign_continuous_chain_ids:
            bioassembly_dict["atom_array"] = self._reassign_atom_array_chain_id(
                bioassembly_dict["atom_array"]
            )

        # Crop
        (
            crop_method,
            cropped_token_array,
            cropped_atom_array,
            cropped_msa_features,
            cropped_template_features,
            reference_token_index,
        ) = self.crop(
            sample_indice=sample_indice,
            bioassembly_dict=bioassembly_dict,
            **self.cropping_configs,
        )

        feat, label, label_full = self.get_feature_and_label(
            idx=idx,
            token_array=cropped_token_array,
            atom_array=cropped_atom_array,
            msa_features=cropped_msa_features,
            template_features=cropped_template_features,
            full_atom_array=bioassembly_dict["atom_array"],
            is_spatial_crop="spatial" in crop_method.lower(),
        )

        # Basic info, e.g. dimension related items
        basic_info = {
            "pdb_id": (
                bioassembly_dict["pdb_id"]
                if self.is_distillation is False
                else sample_indice["pdb_id"]
            ),
            "N_asym": torch.tensor([len(torch.unique(feat["asym_id"]))]),
            "N_token": torch.tensor([feat["token_index"].shape[0]]),
            "N_atom": torch.tensor([feat["atom_to_token_idx"].shape[0]]),
            "N_msa": torch.tensor([feat["msa"].shape[0]]),
            "bioassembly_dict_fpath": bioassembly_dict_fpath,
            "N_msa_prot_pair": torch.tensor([feat["prot_pair_num_alignments"]]),
            "N_msa_prot_unpair": torch.tensor([feat["prot_unpair_num_alignments"]]),
            "N_msa_rna_pair": torch.tensor([feat["rna_pair_num_alignments"]]),
            "N_msa_rna_unpair": torch.tensor([feat["rna_unpair_num_alignments"]]),
        }

        for mol_type in ("protein", "ligand", "rna", "dna"):
            abbr = {"protein": "prot", "ligand": "lig"}
            abbr_type = abbr.get(mol_type, mol_type)
            mol_type_mask = feat[f"is_{mol_type}"].bool()
            n_atom = int(mol_type_mask.sum(dim=-1).item())
            n_token = len(torch.unique(feat["atom_to_token_idx"][mol_type_mask]))
            basic_info[f"N_{abbr_type}_atom"] = torch.tensor([n_atom])
            basic_info[f"N_{abbr_type}_token"] = torch.tensor([n_token])

        # Add chain level chain_id
        asymn_id_to_chain_id = {
            atom.asym_id_int: atom.chain_id for atom in cropped_atom_array
        }
        chain_id_list = [
            asymn_id_to_chain_id[asymn_id_int]
            for asymn_id_int in sorted(asymn_id_to_chain_id.keys())
        ]
        basic_info["chain_id"] = chain_id_list

        data = {
            "input_feature_dict": feat,
            "label_dict": label,
            "label_full_dict": label_full,
            "basic": basic_info,
        }

        if return_atom_token_array:
            data["cropped_atom_array"] = cropped_atom_array
            data["cropped_token_array"] = cropped_token_array
        return data

    def crop(
        self,
        sample_indice: pd.Series,
        bioassembly_dict: dict[str, Any],
        crop_size: int,
        method_weights: list[float],
        contiguous_crop_complete_lig: bool = True,
        spatial_crop_complete_lig: bool = True,
        drop_last: bool = True,
        remove_metal: bool = True,
    ) -> tuple[str, TokenArray, AtomArray, dict[str, Any], dict[str, Any]]:
        """
        Crops the bioassembly data based on the specified configurations.

        Returns:
            A tuple containing the cropping method, cropped token array, cropped atom array,
                cropped MSA features, and cropped template features.
        """
        return DataPipeline.crop(
            one_sample=sample_indice,
            bioassembly_dict=bioassembly_dict,
            crop_size=crop_size,
            msa_featurizer=self.msa_featurizer,
            template_featurizer=self.template_featurizer,
            method_weights=method_weights,
            contiguous_crop_complete_lig=contiguous_crop_complete_lig,
            spatial_crop_complete_lig=spatial_crop_complete_lig,
            drop_last=drop_last,
            remove_metal=remove_metal,
        )

    def _get_sample_indice(self, idx: int) -> pd.Series:
        """
        Retrieves the sample indice for a given index. If the dataset is grouped by PDB ID, it returns the first row of the PDB-idx.
        Otherwise, it returns the row at the specified index.

        Args:
            idx: The index of the data sample to retrieve.

        Returns:
            A pandas Series containing the sample indice.
        """
        if self.group_by_pdb_id:
            # Row-0 of PDB-idx
            sample_indice = self.indices_list[idx].iloc[0]
        else:
            sample_indice = self.indices_list.iloc[idx]
        return sample_indice

    def _get_eval_chain_interface_mask(
        self, idx: int, atom_array_chain_id: np.ndarray
    ) -> tuple[np.ndarray, np.ndarray, torch.Tensor, torch.Tensor]:
        """
        Retrieves the evaluation chain/interface mask for a given index.

        Args:
            idx: The index of the data sample.
            atom_array_chain_id: An array containing the chain IDs of the atom array.

        Returns:
            A tuple containing the evaluation type, cluster ID, chain 1 mask, and chain 2 mask.
        """
        if self.group_by_pdb_id:
            df = self.indices_list[idx]
        else:
            df = self.indices_list.iloc[idx : idx + 1]

        # Only consider chain/interfaces defined in EvaluationChainInterface
        df = df[df["eval_type"].apply(lambda x: x in EvaluationChainInterface)].copy()
        if len(df) < 1:
            raise ValueError(
                f"Cannot find a chain/interface for evaluation in the PDB."
            )

        def get_atom_mask(row):
            chain_1_mask = atom_array_chain_id == row["chain_1_id"]
            if row["type"] == "chain":
                chain_2_mask = chain_1_mask
            else:
                chain_2_mask = atom_array_chain_id == row["chain_2_id"]
            chain_1_mask = torch.tensor(chain_1_mask).bool()
            chain_2_mask = torch.tensor(chain_2_mask).bool()
            if chain_1_mask.sum() == 0 or chain_2_mask.sum() == 0:
                return None, None
            return chain_1_mask, chain_2_mask

        df["chain_1_mask"], df["chain_2_mask"] = zip(*df.apply(get_atom_mask, axis=1))
        df = df[df["chain_1_mask"].notna()]  # drop NaN

        if len(df) < 1:
            raise ValueError(
                f"Cannot find a chain/interface for evaluation in the atom_array."
            )

        eval_type = np.array(df["eval_type"].tolist())
        cluster_id = np.array(df["cluster_id"].tolist())
        # [N_eval, N_atom]
        chain_1_mask = torch.stack(df["chain_1_mask"].tolist())
        # [N_eval, N_atom]
        chain_2_mask = torch.stack(df["chain_2_mask"].tolist())

        return eval_type, cluster_id, chain_1_mask, chain_2_mask

    def get_feature_and_label(
        self,
        idx: int,
        token_array: TokenArray,
        atom_array: AtomArray,
        msa_features: dict[str, Any],
        template_features: dict[str, Any],
        full_atom_array: AtomArray,
        is_spatial_crop: bool = True,
    ) -> tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
        """
        Get feature and label information for a given data point.
        It uses a Featurizer object to obtain input features and labels, and applies several
        steps to add other features and labels. Finally, it returns the feature dictionary, label
        dictionary, and a full label dictionary.

        Args:
            idx: Index of the data point.
            token_array: Token array representing the amino acid sequence.
            atom_array: Atom array containing atomic information.
            msa_features: Dictionary of MSA features.
            template_features: Dictionary of template features.
            full_atom_array: Full atom array containing all atoms.
            is_spatial_crop: Flag indicating whether spatial cropping is applied, by default True.

        Returns:
            A tuple containing the feature dictionary and the label dictionary.

        Raises:
            ValueError: If the ligand cannot be found in the data point.
        """
        # Get feature and labels from Featurizer
        feat = Featurizer(
            cropped_token_array=token_array,
            cropped_atom_array=atom_array,
            ref_pos_augment=self.ref_pos_augment,
            lig_atom_rename=self.lig_atom_rename,
        )
        features_dict = feat.get_all_input_features()
        labels_dict = feat.get_labels()

        # Permutation list for atom permutation
        features_dict["atom_perm_list"] = feat.get_atom_permutation_list()

        # Labels for multi-chain permutation
        # Note: the returned full_atom_array may contain fewer atoms than the input
        label_full_dict, full_atom_array = Featurizer.get_gt_full_complex_features(
            atom_array=full_atom_array,
            cropped_atom_array=atom_array,
            get_cropped_asym_only=is_spatial_crop,
        )

        # Masks for Pocket Metrics
        if self.find_pocket:
            # Get entity_id of the interested ligand
            sample_indice = self._get_sample_indice(idx=idx)
            if sample_indice.mol_1_type == "ligand":
                lig_entity_id = str(sample_indice.entity_1_id)
                lig_chain_id = str(sample_indice.chain_1_id)
            elif sample_indice.mol_2_type == "ligand":
                lig_entity_id = str(sample_indice.entity_2_id)
                lig_chain_id = str(sample_indice.chain_2_id)
            else:
                raise ValueError(f"Cannot find ligand from this data point.")
            # Make sure the cropped array contains interested ligand
            assert lig_entity_id in set(atom_array.label_entity_id)
            assert lig_chain_id in set(atom_array.chain_id)

            # Get asym ID of the specific ligand in the `main` pocket
            lig_asym_id = atom_array.label_asym_id[atom_array.chain_id == lig_chain_id]
            assert len(np.unique(lig_asym_id)) == 1
            lig_asym_id = lig_asym_id[0]
            ligands = [lig_asym_id]

            if self.find_all_pockets:
                # Get asym ID of other ligands with the same entity_id
                all_lig_asym_ids = set(
                    full_atom_array[
                        full_atom_array.label_entity_id == lig_entity_id
                    ].label_asym_id
                )
                ligands.extend(list(all_lig_asym_ids - set([lig_asym_id])))

            # Note: the `main` pocket is the 0-indexed one.
            # [N_pocket, N_atom], [N_pocket, N_atom].
            # If not find_all_pockets, then N_pocket = 1.
            interested_ligand_mask, pocket_mask = feat.get_lig_pocket_mask(
                atom_array=full_atom_array, lig_label_asym_id=ligands
            )

            label_full_dict["pocket_mask"] = pocket_mask
            label_full_dict["interested_ligand_mask"] = interested_ligand_mask

        # Masks for Chain/Interface Metrics
        if self.find_eval_chain_interface:
            eval_type, cluster_id, chain_1_mask, chain_2_mask = (
                self._get_eval_chain_interface_mask(
                    idx=idx, atom_array_chain_id=full_atom_array.chain_id
                )
            )
            labels_dict["eval_type"] = eval_type  # [N_eval]
            labels_dict["cluster_id"] = cluster_id  # [N_eval]
            labels_dict["chain_1_mask"] = chain_1_mask  # [N_eval, N_atom]
            labels_dict["chain_2_mask"] = chain_2_mask  # [N_eval, N_atom]

        # Make dummy features for not implemented features
        dummy_feats = []
        if len(msa_features) == 0:
            dummy_feats.append("msa")
        else:
            msa_features = dict_to_tensor(msa_features)
            features_dict.update(msa_features)
        if len(template_features) == 0:
            dummy_feats.append("template")
        else:
            template_features = dict_to_tensor(template_features)
            features_dict.update(template_features)

        features_dict = make_dummy_feature(
            features_dict=features_dict, dummy_feats=dummy_feats
        )
        # Transform to right data type
        features_dict = data_type_transform(feat_or_label_dict=features_dict)
        labels_dict = data_type_transform(feat_or_label_dict=labels_dict)

        # Is_distillation
        features_dict["is_distillation"] = torch.tensor([self.is_distillation])
        if self.is_distillation is True:
            features_dict["resolution"] = torch.tensor([-1.0])
        return features_dict, labels_dict, label_full_dict


def get_msa_featurizer(configs, dataset_name: str, stage: str) -> Optional[Callable]:
    """
    Creates and returns an MSAFeaturizer object based on the provided configurations.

    Args:
        configs: A dictionary containing the configurations for the MSAFeaturizer.
        dataset_name: The name of the dataset.
        stage: The stage of the dataset (e.g., 'train', 'test').

    Returns:
        An MSAFeaturizer object if MSA is enabled in the configurations, otherwise None.
    """
    if "msa" in configs["data"] and configs["data"]["msa"]["enable"]:
        msa_info = configs["data"]["msa"]
        msa_args = deepcopy(msa_info)

        if "msa" in (dataset_config := configs["data"][dataset_name]):
            for k, v in dataset_config["msa"].items():
                if k not in ["prot", "rna"]:
                    msa_args[k] = v
                else:
                    for kk, vv in dataset_config["msa"][k].items():
                        msa_args[k][kk] = vv

        prot_msa_args = msa_args["prot"]
        prot_msa_args.update(
            {
                "dataset_name": dataset_name,
                "merge_method": msa_args["merge_method"],
                "max_size": msa_args["max_size"][stage],
            }
        )

        rna_msa_args = msa_args["rna"]
        rna_msa_args.update(
            {
                "dataset_name": dataset_name,
                "merge_method": msa_args["merge_method"],
                "max_size": msa_args["max_size"][stage],
            }
        )

        return MSAFeaturizer(
            prot_msa_args=prot_msa_args,
            rna_msa_args=rna_msa_args,
            enable_rna_msa=configs.data.msa.enable_rna_msa,
        )

    else:
        return None


class WeightedMultiDataset(Dataset):
    """
    A weighted dataset composed of multiple datasets with weights.
    """

    def __init__(
        self,
        datasets: list[Dataset],
        dataset_names: list[str],
        datapoint_weights: list[list[float]],
        dataset_sample_weights: list[torch.tensor],
    ):
        """
        Initializes the WeightedMultiDataset.
        Args:
            datasets: A list of Dataset objects.
            dataset_names: A list of dataset names corresponding to the datasets.
            datapoint_weights: A list of lists containing sampling weights for each datapoint in the datasets.
            dataset_sample_weights: A list of torch tensors containing sampling weights for each dataset.
        """
        self.datasets = datasets
        self.dataset_names = dataset_names
        self.datapoint_weights = datapoint_weights
        self.dataset_sample_weights = torch.Tensor(dataset_sample_weights)
        self.iteration = 0
        self.offset = 0
        self.init_datasets()

    def init_datasets(self):
        """Calculate global weights of each datapoint in datasets for future sampling."""
        self.merged_datapoint_weights = []
        self.weight = 0.0
        self.dataset_indices = []
        self.within_dataset_indices = []
        for dataset_index, (
            dataset,
            datapoint_weight_list,
            dataset_weight,
        ) in enumerate(
            zip(self.datasets, self.datapoint_weights, self.dataset_sample_weights)
        ):
            # normalize each dataset weights
            weight_sum = sum(datapoint_weight_list)
            datapoint_weight_list = [
                dataset_weight * w / weight_sum for w in datapoint_weight_list
            ]
            self.merged_datapoint_weights.extend(datapoint_weight_list)
            self.weight += dataset_weight
            self.dataset_indices.extend([dataset_index] * len(datapoint_weight_list))
            self.within_dataset_indices.extend(list(range(len(datapoint_weight_list))))
        self.merged_datapoint_weights = torch.tensor(
            self.merged_datapoint_weights, dtype=torch.float64
        )

    def __len__(self) -> int:
        return len(self.merged_datapoint_weights)

    def __getitem__(self, index: int) -> dict[str, dict]:
        return self.datasets[self.dataset_indices[index]][
            self.within_dataset_indices[index]
        ]


def get_weighted_pdb_weight(
    data_type: str,
    cluster_size: int,
    chain_count: dict,
    eps: float = 1e-9,
    beta_dict: Optional[dict] = None,
    alpha_dict: Optional[dict] = None,
) -> float:
    """
    Get sample weight for each example in a weighted PDB dataset.

        data_type (str): Type of data, either 'chain' or 'interface'.
        cluster_size (int): Cluster size of this chain/interface.
        chain_count (dict): Count of each kind of chains, e.g., {"prot": int, "nuc": int, "ligand": int}.
        eps (float, optional): A small epsilon value to avoid division by zero. Default is 1e-9.
        beta_dict (Optional[dict], optional): Dictionary containing beta values for 'chain' and 'interface'.
        alpha_dict (Optional[dict], optional): Dictionary containing alpha values for different chain types.

    Returns:
         float: Calculated weight for the given chain/interface.
    """
    if not beta_dict:
        beta_dict = {
            "chain": 0.5,
            "interface": 1,
        }
    if not alpha_dict:
        alpha_dict = {
            "prot": 3,
            "nuc": 3,
            "ligand": 1,
        }

    assert cluster_size > 0
    assert data_type in ["chain", "interface"]
    beta = beta_dict[data_type]
    assert set(chain_count.keys()).issubset(set(alpha_dict.keys()))
    weight = (
        beta
        * sum(
            [alpha * chain_count[data_mode] for data_mode, alpha in alpha_dict.items()]
        )
        / (cluster_size + eps)
    )
    return weight


def calc_weights_for_df(
    indices_df: pd.DataFrame, beta_dict: dict[str, Any], alpha_dict: dict[str, Any]
) -> pd.DataFrame:
    """
    Calculate weights for each example in the dataframe.

    Args:
        indices_df: A pandas DataFrame containing the indices.
        beta_dict: A dictionary containing beta values for different data types.
        alpha_dict: A dictionary containing alpha values for different data types.

    Returns:
        A pandas DataFrame with an column 'weights' containing the calculated weights.
    """
    # Specific to assembly, and entities (chain or interface)
    indices_df["pdb_sorted_entity_id"] = indices_df.apply(
        lambda x: f"{x['pdb_id']}_{x['assembly_id']}_{'_'.join(sorted([str(x['entity_1_id']), str(x['entity_2_id'])]))}",
        axis=1,
    )

    entity_member_num_dict = {}
    for pdb_sorted_entity_id, sub_df in indices_df.groupby("pdb_sorted_entity_id"):
        # Number of repeatative entities in the same assembly
        entity_member_num_dict[pdb_sorted_entity_id] = len(sub_df)
    indices_df["pdb_sorted_entity_id_member_num"] = indices_df.apply(
        lambda x: entity_member_num_dict[x["pdb_sorted_entity_id"]], axis=1
    )

    cluster_size_record = {}
    for cluster_id, sub_df in indices_df.groupby("cluster_id"):
        cluster_size_record[cluster_id] = len(set(sub_df["pdb_sorted_entity_id"]))

    weights = []
    for _, row in indices_df.iterrows():
        data_type = row["type"]
        cluster_size = cluster_size_record[row["cluster_id"]]
        chain_count = {"prot": 0, "nuc": 0, "ligand": 0}
        for mol_type in [row["mol_1_type"], row["mol_2_type"]]:
            if chain_count.get(mol_type) is None:
                continue
            chain_count[mol_type] += 1
        # Weight specific to (assembly, entity(chain/interface))
        weight = get_weighted_pdb_weight(
            data_type=data_type,
            cluster_size=cluster_size,
            chain_count=chain_count,
            beta_dict=beta_dict,
            alpha_dict=alpha_dict,
        )
        weights.append(weight)
    indices_df["weights"] = weights / indices_df["pdb_sorted_entity_id_member_num"]
    return indices_df


def get_sample_weights(
    sampler_type: str,
    indices_df: pd.DataFrame = None,
    beta_dict: dict = {
        "chain": 0.5,
        "interface": 1,
    },
    alpha_dict: dict = {
        "prot": 3,
        "nuc": 3,
        "ligand": 1,
    },
    force_recompute_weight: bool = False,
) -> Union[pd.Series, list[float]]:
    """
    Computes sample weights based on the specified sampler type.

    Args:
        sampler_type: The type of sampler to use ('weighted' or 'uniform').
        indices_df: A pandas DataFrame containing the indices.
        beta_dict: A dictionary containing beta values for different data types.
        alpha_dict: A dictionary containing alpha values for different data types.
        force_recompute_weight: Whether to force recomputation of weights even if they already exist.

    Returns:
        A list of sample weights.

    Raises:
        ValueError: If an unknown sampler type is provided.
    """
    if sampler_type == "weighted":
        assert indices_df is not None
        if "weights" not in indices_df.columns or force_recompute_weight:
            indices_df = calc_weights_for_df(
                indices_df=indices_df,
                beta_dict=beta_dict,
                alpha_dict=alpha_dict,
            )
        return indices_df["weights"].astype("float32")
    elif sampler_type == "uniform":
        assert indices_df is not None
        return [1 / len(indices_df) for _ in range(len(indices_df))]
    else:
        raise ValueError(f"Unknown sampler type: {sampler_type}")


def get_datasets(
    configs: ConfigDict, error_dir: Optional[str]
) -> tuple[WeightedMultiDataset, dict[str, BaseSingleDataset]]:
    """
    Get training and testing datasets given configs

    Args:
        configs: A ConfigDict containing the dataset configurations.
        error_dir: The directory where error logs will be saved.

    Returns:
        A tuple containing the training dataset and a dictionary of testing datasets.
    """

    def _get_dataset_param(config_dict, dataset_name: str, stage: str):
        # Template_featurizer is under development
        # Lig_atom_rename/shuffle_mols/shuffle_sym_ids do not affect the performance very much
        return {
            "name": dataset_name,
            **config_dict["base_info"],
            "cropping_configs": config_dict["cropping_configs"],
            "error_dir": error_dir,
            "msa_featurizer": get_msa_featurizer(configs, dataset_name, stage),
            "template_featurizer": None,
            "lig_atom_rename": config_dict.get("lig_atom_rename", False),
            "shuffle_mols": config_dict.get("shuffle_mols", False),
            "shuffle_sym_ids": config_dict.get("shuffle_sym_ids", False),
        }

    data_config = configs.data
    logger.info(f"Using train sets {data_config.train_sets}")
    assert len(data_config.train_sets) == len(
        data_config.train_sampler.train_sample_weights
    )
    train_datasets = []
    datapoint_weights = []
    for train_name in data_config.train_sets:
        config_dict = data_config[train_name].to_dict()
        dataset_param = _get_dataset_param(
            config_dict, dataset_name=train_name, stage="train"
        )
        dataset_param["ref_pos_augment"] = data_config.get(
            "train_ref_pos_augment", True
        )
        dataset_param["limits"] = data_config.get("limits", -1)
        train_dataset = BaseSingleDataset(**dataset_param)
        train_datasets.append(train_dataset)
        datapoint_weights.append(
            get_sample_weights(
                **data_config[train_name]["sampler_configs"],
                indices_df=train_dataset.indices_list,
            )
        )
    train_dataset = WeightedMultiDataset(
        datasets=train_datasets,
        dataset_names=data_config.train_sets,
        datapoint_weights=datapoint_weights,
        dataset_sample_weights=data_config.train_sampler.train_sample_weights,
    )

    test_datasets = {}
    test_sets = data_config.test_sets
    for test_name in test_sets:
        config_dict = data_config[test_name].to_dict()
        dataset_param = _get_dataset_param(
            config_dict, dataset_name=test_name, stage="test"
        )
        dataset_param["ref_pos_augment"] = data_config.get("test_ref_pos_augment", True)
        test_dataset = BaseSingleDataset(**dataset_param)
        test_datasets[test_name] = test_dataset
    return train_dataset, test_datasets