File size: 7,163 Bytes
89c0b51 6660af8 89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import traceback
import warnings
from typing import Any, Mapping
import torch
from biotite.structure import AtomArray
from torch.utils.data import DataLoader, Dataset, DistributedSampler
from protenix.data.data_pipeline import DataPipeline
from protenix.data.json_to_feature import SampleDictToFeatures
from protenix.data.msa_featurizer import InferenceMSAFeaturizer
from protenix.data.utils import data_type_transform, make_dummy_feature
from protenix.utils.distributed import DIST_WRAPPER
from protenix.utils.torch_utils import dict_to_tensor
logger = logging.getLogger(__name__)
warnings.filterwarnings("ignore", module="biotite")
def get_inference_dataloader(configs: Any) -> DataLoader:
"""
Creates and returns a DataLoader for inference using the InferenceDataset.
Args:
configs: A configuration object containing the necessary parameters for the DataLoader.
Returns:
A DataLoader object configured for inference.
"""
inference_dataset = InferenceDataset(
input_json_path=configs.input_json_path,
dump_dir=configs.dump_dir,
use_msa=configs.use_msa,
)
sampler = DistributedSampler(
dataset=inference_dataset,
num_replicas=DIST_WRAPPER.world_size,
rank=DIST_WRAPPER.rank,
shuffle=False,
)
dataloader = DataLoader(
dataset=inference_dataset,
batch_size=1,
sampler=sampler,
collate_fn=lambda batch: batch,
num_workers=0,
)
return dataloader
class InferenceDataset(Dataset):
def __init__(
self,
input_json_path: str,
dump_dir: str,
use_msa: bool = True,
) -> None:
self.input_json_path = input_json_path
self.dump_dir = dump_dir
self.use_msa = use_msa
with open(self.input_json_path, "r") as f:
self.inputs = json.load(f)
def process_one(
self,
single_sample_dict: Mapping[str, Any],
) -> tuple[dict[str, torch.Tensor], AtomArray, dict[str, float]]:
"""
Processes a single sample from the input JSON to generate features and statistics.
Args:
single_sample_dict: A dictionary containing the sample data.
Returns:
A tuple containing:
- A dictionary of features.
- An AtomArray object.
- A dictionary of time tracking statistics.
"""
# general features
t0 = time.time()
sample2feat = SampleDictToFeatures(
single_sample_dict,
)
features_dict, atom_array, token_array = sample2feat.get_feature_dict()
features_dict["distogram_rep_atom_mask"] = torch.Tensor(
atom_array.distogram_rep_atom_mask
).long()
entity_poly_type = sample2feat.entity_poly_type
t1 = time.time()
# Msa features
entity_to_asym_id = DataPipeline.get_label_entity_id_to_asym_id_int(atom_array)
msa_features = (
InferenceMSAFeaturizer.make_msa_feature(
bioassembly=single_sample_dict["sequences"],
entity_to_asym_id=entity_to_asym_id,
token_array=token_array,
atom_array=atom_array,
)
if self.use_msa
else {}
)
# Make dummy features for not implemented features
dummy_feats = ["template"]
if len(msa_features) == 0:
dummy_feats.append("msa")
else:
msa_features = dict_to_tensor(msa_features)
features_dict.update(msa_features)
features_dict = make_dummy_feature(
features_dict=features_dict,
dummy_feats=dummy_feats,
)
# Transform to right data type
feat = data_type_transform(feat_or_label_dict=features_dict)
t2 = time.time()
data = {}
data["input_feature_dict"] = feat
# Add dimension related items
N_token = feat["token_index"].shape[0]
N_atom = feat["atom_to_token_idx"].shape[0]
N_msa = feat["msa"].shape[0]
stats = {}
for mol_type in ["ligand", "protein", "dna", "rna"]:
mol_type_mask = feat[f"is_{mol_type}"].bool()
stats[f"{mol_type}/atom"] = int(mol_type_mask.sum(dim=-1).item())
stats[f"{mol_type}/token"] = len(
torch.unique(feat["atom_to_token_idx"][mol_type_mask])
)
N_asym = len(torch.unique(data["input_feature_dict"]["asym_id"]))
data.update(
{
"N_asym": torch.tensor([N_asym]),
"N_token": torch.tensor([N_token]),
"N_atom": torch.tensor([N_atom]),
"N_msa": torch.tensor([N_msa]),
}
)
def formatted_key(key):
type_, unit = key.split("/")
if type_ == "protein":
type_ = "prot"
elif type_ == "ligand":
type_ = "lig"
else:
pass
return f"N_{type_}_{unit}"
data.update(
{
formatted_key(k): torch.tensor([stats[k]])
for k in [
"protein/atom",
"ligand/atom",
"dna/atom",
"rna/atom",
"protein/token",
"ligand/token",
"dna/token",
"rna/token",
]
}
)
data.update({"entity_poly_type": entity_poly_type})
t3 = time.time()
time_tracker = {
"crop": t1 - t0,
"featurizer": t2 - t1,
"added_feature": t3 - t2,
}
return data, atom_array, time_tracker
def __len__(self) -> int:
return len(self.inputs)
def __getitem__(self, index: int) -> tuple[dict[str, torch.Tensor], AtomArray, str]:
try:
single_sample_dict = self.inputs[index]
sample_name = single_sample_dict["name"]
logger.info(f"Featurizing {sample_name}...")
data, atom_array, _ = self.process_one(
single_sample_dict=single_sample_dict
)
error_message = ""
except Exception as e:
data, atom_array = {}, None
error_message = f"{e}:\n{traceback.format_exc()}"
data["sample_name"] = single_sample_dict["name"]
data["sample_index"] = index
return data, atom_array, error_message
|