File size: 20,643 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import copy
import logging
import random
import warnings
from collections import Counter
from typing import Any
import biotite.structure as struc
import numpy as np
from biotite.structure import AtomArray
from rdkit import Chem
from rdkit.Chem import AllChem
from protenix.data import ccd
logger = logging.getLogger(__name__)
DNA_1to3 = {
"A": "DA",
"G": "DG",
"C": "DC",
"T": "DT",
"X": "DN",
"I": "DI", # eg: pdb 114d
"N": "DN", # eg: pdb 7r6t-3DR
"U": "DU", # eg: pdb 7sd8
}
RNA_1to3 = {
"A": "A",
"G": "G",
"C": "C",
"U": "U",
"X": "N",
"I": "I", # eg: pdb 7wv5
"N": "N",
}
PROTEIN_1to3 = {
"A": "ALA",
"R": "ARG",
"N": "ASN",
"D": "ASP",
"C": "CYS",
"Q": "GLN",
"E": "GLU",
"G": "GLY",
"H": "HIS",
"I": "ILE",
"L": "LEU",
"K": "LYS",
"M": "MET",
"F": "PHE",
"P": "PRO",
"S": "SER",
"T": "THR",
"W": "TRP",
"Y": "TYR",
"V": "VAL",
"X": "UNK",
}
def add_reference_features(atom_array: AtomArray) -> AtomArray:
"""
Add reference features of each resiude to atom_array
Args:
atom_array (AtomArray): biotite AtomArray
Returns:
AtomArray: biotite AtomArray with reference features
- ref_pos: reference conformer atom positions
- ref_charge (n): reference conformer atom charges
- ref_mask: reference conformer atom masks
"""
atom_count = len(atom_array)
ref_pos = np.zeros((atom_count, 3), dtype=np.float32)
ref_charge = np.zeros(atom_count, dtype=int)
ref_mask = np.zeros(atom_count, dtype=int)
starts = struc.get_residue_starts(atom_array, add_exclusive_stop=True)
for start, stop in zip(starts[:-1], starts[1:]):
res_name = atom_array.res_name[start]
if res_name == "UNL":
# UNL is smiles ligand, copy info from atom_array
ref_pos[start:stop] = atom_array.coord[start:stop]
ref_charge[start:stop] = atom_array.charge[start:stop]
ref_mask[start:stop] = 1
continue
ref_info = ccd.get_ccd_ref_info(res_name)
if ref_info:
atom_sub_idx = [
*map(ref_info["atom_map"].get, atom_array.atom_name[start:stop])
]
ref_pos[start:stop] = ref_info["coord"][atom_sub_idx]
ref_charge[start:stop] = ref_info["charge"][atom_sub_idx]
ref_mask[start:stop] = ref_info["mask"][atom_sub_idx]
else:
logging.warning(f"no reference info for {res_name}")
atom_array.set_annotation("ref_pos", ref_pos)
atom_array.set_annotation("ref_charge", ref_charge)
atom_array.set_annotation("ref_mask", ref_mask)
return atom_array
def _remove_non_std_ccd_leaving_atoms(atom_array: AtomArray) -> AtomArray:
"""
Check polymer connections and remove non-standard leaving atoms
Args:
atom_array (AtomArray): biotite AtomArray
Returns:
AtomArray: biotite AtomArray with leaving atoms removed.
"""
connected = np.zeros(atom_array.res_id[-1], dtype=bool)
for i, j, t in atom_array.bonds._bonds:
if abs(atom_array.res_id[i] - atom_array.res_id[j]) == 1:
connected[atom_array.res_id[[i, j]].min()] = True
leaving_atoms = np.zeros(len(atom_array), dtype=bool)
for res_id, conn in enumerate(connected):
if res_id == 0 or conn:
continue
# Res_id start from 1
res_name_i = atom_array.res_name[atom_array.res_id == res_id][0]
res_name_j = atom_array.res_name[atom_array.res_id == res_id + 1][0]
warnings.warn(
f"No C-N or O3'-P bond between residue {res_name_i}({res_id}) and residue {res_name_j}({res_id+1}). \n"
f"all leaving atoms will be removed for both residues."
)
for idx, res_name in zip([res_id, res_id + 1], [res_name_i, res_name_j]):
staying_atoms = ccd.get_component_atom_array(
res_name, keep_leaving_atoms=False, keep_hydrogens=False
).atom_name
if idx == 1 and ccd.get_mol_type(res_name) in ("dna", "rna"):
staying_atoms = np.append(staying_atoms, ["OP3"])
if idx == atom_array.res_id[-1] and ccd.get_mol_type(res_name) == "protein":
staying_atoms = np.append(staying_atoms, ["OXT"])
leaving_atoms |= (atom_array.res_id == idx) & (
~np.isin(atom_array.atom_name, staying_atoms)
)
return atom_array[~leaving_atoms]
def find_range_by_index(starts: np.ndarray, atom_index: int) -> tuple[int, int]:
"""
Find the residue range of an atom index
Args:
starts (np.ndarray): Residue starts or Chain starts with exclusive stop.
atom_index (int): Atom index.
Returns:
tuple[int, int]: range (start, stop).
"""
for start, stop in zip(starts[:-1], starts[1:]):
if start <= atom_index < stop:
return start, stop
raise ValueError(f"atom_index {atom_index} not found in starts {starts}")
def remove_leaving_atoms(atom_array: AtomArray, bond_count: dict) -> AtomArray:
"""
Remove leaving atoms based on ccd info
Args:
atom_array (AtomArray): Biotite Atom array.
bond_count (dict): atom index -> Bond count.
Returns:
AtomArray: Biotite Atom array with leaving atoms removed.
"""
remove_indices = []
res_starts = struc.get_residue_starts(atom_array, add_exclusive_stop=True)
for centre_idx, b_count in bond_count.items():
res_name = atom_array.res_name[centre_idx]
centre_name = atom_array.atom_name[centre_idx]
comp = ccd.get_component_atom_array(
res_name, keep_leaving_atoms=True, keep_hydrogens=False
)
if comp is None:
continue
leaving_groups = comp.central_to_leaving_groups.get(centre_name)
if leaving_groups is None:
continue
if b_count > len(leaving_groups):
warnings.warn(
f"centre atom {centre_name=} {res_name=} {centre_idx=} has {b_count} inter residue bonds, greater than number of leaving groups:{leaving_groups}, remove all leaving atoms.\n"
f"atom info: {atom_array[centre_idx]=}"
)
remove_groups = leaving_groups
else:
remove_groups = random.sample(leaving_groups, b_count)
start, stop = find_range_by_index(res_starts, centre_idx)
# Find leaving atom indices
for group in remove_groups:
for atom_name in group:
leaving_idx = np.where(atom_array.atom_name[start:stop] == atom_name)[0]
if len(leaving_idx) == 0:
logging.info(f"{atom_name=} not found in residue {res_name}, ")
continue
remove_indices.append(leaving_idx[0] + start)
if not remove_indices:
return atom_array
keep_mask = np.ones(len(atom_array), dtype=bool)
keep_mask[remove_indices] = False
return atom_array[keep_mask]
def _add_bonds_to_terminal_residues(atom_array: AtomArray) -> AtomArray:
"""
Add bonds to terminal residues (eg: ACE, NME)
Args:
atom_array (AtomArray): Biotite AtomArray
Returns:
AtomArray: Biotite AtomArray with non-standard polymer bonds
"""
if atom_array.res_name[0] == "ACE":
term_res_idx = atom_array.res_id[0]
next_res_idx = term_res_idx + 1
term_atom_idx = np.where(
(atom_array.res_id == term_res_idx) & (atom_array.atom_name == "C")
)[0]
next_atom_idx = np.where(
(atom_array.res_id == next_res_idx) & (atom_array.atom_name == "N")
)[0]
if len(term_atom_idx) > 0 and len(next_atom_idx) > 0:
atom_array.bonds.add_bond(term_atom_idx[0], next_atom_idx[0], 1)
if atom_array.res_name[-1] == "NME":
term_res_idx = atom_array.res_id[-1]
prev_res_idx = term_res_idx - 1
term_atom_idx = np.where(
(atom_array.res_id == term_res_idx) & (atom_array.atom_name == "N")
)[0]
prev_atom_idx = np.where(
(atom_array.res_id == prev_res_idx) & (atom_array.atom_name == "C")
)[0]
if len(prev_atom_idx) > 0 and len(term_atom_idx) > 0:
atom_array.bonds.add_bond(prev_atom_idx[0], term_atom_idx[0], 1)
return atom_array
def _build_polymer_atom_array(ccd_seqs: list[str]) -> tuple[AtomArray, struc.BondList]:
"""
Build polymer atom_array from ccd codes, but not remove leaving atoms
Args:
ccd_seqs: a list of ccd code in sequence, ["MET", "ALA"] or ["DA", "DT"]
Returns:
AtomArray: Biotite AtomArray of chain
BondList: Biotite BondList of polymer bonds (C-N or O3'-P)
"""
chain = struc.AtomArray(0)
for res_id, res_name in enumerate(ccd_seqs):
# Keep all leaving atoms, will remove leaving atoms later
residue = ccd.get_component_atom_array(
res_name, keep_leaving_atoms=True, keep_hydrogens=False
)
residue.res_id[:] = res_id + 1
chain += residue
res_starts = struc.get_residue_starts(chain, add_exclusive_stop=True)
polymer_bonds = ccd._connect_inter_residue(chain, res_starts)
if chain.bonds is None:
chain.bonds = polymer_bonds
else:
chain.bonds = chain.bonds.merge(polymer_bonds)
chain = _add_bonds_to_terminal_residues(chain)
bond_count = {}
for i, j, t in polymer_bonds._bonds:
bond_count[i] = bond_count.get(i, 0) + 1
bond_count[j] = bond_count.get(j, 0) + 1
chain = remove_leaving_atoms(chain, bond_count)
chain = _remove_non_std_ccd_leaving_atoms(chain)
return chain
def build_polymer(entity_info: dict) -> dict:
"""
Build a polymer from a polymer info dict
example: {
"name": "polymer",
"sequence": "GPDSMEEVVVPEEPPKLVSALATYVQQERLCTMFLSIANKLLPLKP",
"count": 1
}
Args:
item (dict): polymer info dict
Returns:
dict: {"atom_array": biotite_AtomArray_object}
"""
poly_type, info = list(entity_info.items())[0]
if poly_type == "proteinChain":
ccd_seqs = [PROTEIN_1to3[x] for x in info["sequence"]]
if modifications := info.get("modifications"):
for m in modifications:
index = m["ptmPosition"] - 1
mtype = m["ptmType"]
if mtype.startswith("CCD_"):
ccd_seqs[index] = mtype[4:]
else:
raise ValueError(f"unknown modification type: {mtype}")
if glycans := info.get("glycans"):
logging.warning(f"glycans not supported: {glycans}")
chain_array = _build_polymer_atom_array(ccd_seqs)
elif poly_type in ("dnaSequence", "rnaSequence"):
map_1to3 = DNA_1to3 if poly_type == "dnaSequence" else RNA_1to3
ccd_seqs = [map_1to3[x] for x in info["sequence"]]
if modifications := info.get("modifications"):
for m in modifications:
index = m["basePosition"] - 1
mtype = m["modificationType"]
if mtype.startswith("CCD_"):
ccd_seqs[index] = mtype[4:]
else:
raise ValueError(f"unknown modification type: {mtype}")
chain_array = _build_polymer_atom_array(ccd_seqs)
else:
raise ValueError(
"polymer type must be proteinChain, dnaSequence or rnaSequence"
)
chain_array = add_reference_features(chain_array)
return {"atom_array": chain_array}
def rdkit_mol_to_atom_array(mol: Chem.Mol, removeHs: bool = True) -> AtomArray:
"""
Convert rdkit mol to biotite AtomArray
Args:
mol (Chem.Mol): rdkit mol
removeHs (bool): whether to remove hydrogens in atom_array
Returns:
AtomArray: biotite AtomArray
"""
atom_count = mol.GetNumAtoms()
atom_array = AtomArray(atom_count)
atom_array.hetero[:] = True
atom_array.res_name[:] = "UNL"
atom_array.add_annotation("charge", int)
conf = mol.GetConformer()
coord = conf.GetPositions()
element_count = Counter()
for i, atom in enumerate(mol.GetAtoms()):
element = atom.GetSymbol().upper()
element_count[element] += 1
atom_name = f"{element}{element_count[element]}"
atom.SetProp("name", atom_name)
atom_array.atom_name[i] = atom_name
atom_array.element[i] = element
atom_array.charge[i] = atom.GetFormalCharge()
atom_array.coord[i, :] = coord[i, :]
bonds = []
for bond in mol.GetBonds():
bonds.append([bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()])
atom_array.bonds = struc.BondList(atom_count, np.array(bonds))
if removeHs:
atom_array = atom_array[atom_array.element != "H"]
return atom_array
def rdkit_mol_to_atom_info(mol: Chem.Mol) -> dict[str, Any]:
"""
Convert RDKit Mol to atom_info dict.
Args:
mol (Chem.Mol): rdkit mol
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"atom_map_to_atom_name": {1: "C2"}, # only for smiles
}
"""
atom_info = {}
atom_map_to_atom_name = {}
atom_idx_to_atom_name = {}
element_count = Counter()
for atom in mol.GetAtoms():
element = atom.GetSymbol().upper()
element_count[element] += 1
atom_name = f"{element}{element_count[element]}"
atom.SetProp("name", atom_name)
if atom.GetAtomMapNum() != 0:
atom_map_to_atom_name[atom.GetAtomMapNum()] = atom_name
atom_idx_to_atom_name[atom.GetIdx()] = atom_name
if atom_map_to_atom_name:
# Atom map for input SMILES
atom_info["atom_map_to_atom_name"] = atom_map_to_atom_name
else:
# Atom index for input file
atom_info["atom_map_to_atom_name"] = atom_idx_to_atom_name
# Atom_array without hydrogens
atom_info["atom_array"] = rdkit_mol_to_atom_array(mol, removeHs=True)
return atom_info
def lig_file_to_atom_info(lig_file_path: str) -> dict[str, Any]:
"""
Convert ligand file to biotite AtomArray.
Args:
lig_file_path (str): ligand file path with one of the following suffixes: [mol, mol2, sdf, pdb]
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"atom_map_to_atom_name": {1: "C2"}, # only for smiles
}
"""
if lig_file_path.endswith(".mol"):
mol = Chem.MolFromMolFile(lig_file_path)
elif lig_file_path.endswith(".sdf"):
suppl = Chem.SDMolSupplier(lig_file_path)
mol = next(suppl)
elif lig_file_path.endswith(".pdb"):
mol = Chem.MolFromPDBFile(lig_file_path)
elif lig_file_path.endswith(".mol2"):
mol = Chem.MolFromMol2File(lig_file_path)
else:
raise ValueError(f"Invalid ligand file type: .{lig_file_path.split('.')[-1]}")
assert (
mol is not None
), f"Failed to retrieve molecule from file, invalid ligand file: {lig_file_path}. \
Please provide a file with one of the following suffixes: [mol, mol2, sdf, pdb]."
assert (
mol.GetConformer().Is3D()
), f"3D conformer not found in ligand file: {lig_file_path}"
atom_info = rdkit_mol_to_atom_info(mol)
return atom_info
def smiles_to_atom_info(smiles: str) -> dict:
"""
Convert smiles to atom_array, and atom_map_to_atom_name
Args:
smiles (str): smiles string, like "CCCC", or "[C:1]NC(=O)" (use num to label covalent bond atom.)
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"atom_map_to_atom_name": {1: "C2"}, # only for smiles
}
"""
atom_info = {}
mol = Chem.MolFromSmiles(smiles)
mol = Chem.AddHs(mol)
with concurrent.futures.ThreadPoolExecutor() as executor:
future = executor.submit(AllChem.EmbedMolecule, mol)
try:
ret_code = future.result(timeout=90)
except concurrent.futures.TimeoutError as exc:
raise TimeoutError(
'Conformer generation timed out. \
Please change the "ligand" input format to "CCD_" or "FILE_".'
) from exc
if ret_code != 0:
# retry with random coords
ret_code = AllChem.EmbedMolecule(mol, useRandomCoords=True)
assert ret_code == 0, f"Conformer generation failed for input SMILES: {smiles}"
atom_info = rdkit_mol_to_atom_info(mol)
return atom_info
def build_ligand(entity_info: dict) -> dict:
"""
Build a ligand from a ligand entity info dict
example1: {
"ligand": {
"ligand": "CCD_ATP",
"count": 1
}
},
example2:{
"ligand": {
"ligand": "CCC=O", # smiles
"count": 1
}
},
example3:{
"ion": {
"ion": "NA",
"count": 3
}
},
Args:
entity_info (dict): ligand entity info
Returns:
dict: info of atoms
example: {
"atom_array": biotite_AtomArray_object,
"index_to_atom_name": {1: "C2"}, # only for smiles
}
"""
if info := entity_info.get("ion"):
ccd_code = [info["ion"]]
elif info := entity_info.get("ligand"):
ligand_str = info["ligand"]
if ligand_str.startswith("CCD_"):
ccd_code = ligand_str[4:].split("_")
else:
ccd_code = None
atom_info = {}
if ccd_code is not None:
atom_array = AtomArray(0)
res_ids = []
for idx, code in enumerate(ccd_code):
ccd_atom_array = ccd.get_component_atom_array(
code, keep_leaving_atoms=True, keep_hydrogens=False
)
atom_array += ccd_atom_array
res_id = idx + 1
res_ids += [res_id] * len(ccd_atom_array)
atom_info["atom_array"] = atom_array
atom_info["atom_array"].res_id[:] = res_ids
else:
if info["ligand"].startswith("FILE_"):
lig_file_path = ligand_str[5:]
atom_info = lig_file_to_atom_info(lig_file_path)
else:
atom_info = smiles_to_atom_info(ligand_str)
atom_info["atom_array"].res_id[:] = 1
atom_info["atom_array"] = add_reference_features(atom_info["atom_array"])
return atom_info
def add_entity_atom_array(single_job_dict: dict) -> dict:
"""
Add atom_array to each entity in single_job_dict
Args:
single_job_dict (dict): input job dict
Returns:
dict: deepcopy and updated job dict with atom_array
"""
single_job_dict = copy.deepcopy(single_job_dict)
sequences = single_job_dict["sequences"]
smiles_ligand_count = 0
for entity_info in sequences:
if info := entity_info.get("proteinChain"):
atom_info = build_polymer(entity_info)
elif info := entity_info.get("dnaSequence"):
atom_info = build_polymer(entity_info)
elif info := entity_info.get("rnaSequence"):
atom_info = build_polymer(entity_info)
elif info := entity_info.get("ligand"):
atom_info = build_ligand(entity_info)
if not info["ligand"].startswith("CCD_"):
smiles_ligand_count += 1
assert smiles_ligand_count <= 99, "too many smiles ligands"
# use lower case res_name (l01, l02, ..., l99) to avoid conflict with CCD code
atom_info["atom_array"].res_name[:] = f"l{smiles_ligand_count:02d}"
elif info := entity_info.get("ion"):
atom_info = build_ligand(entity_info)
else:
raise ValueError(
"entity type must be proteinChain, dnaSequence, rnaSequence, ligand or ion"
)
info.update(atom_info)
return single_job_dict
|