File size: 44,463 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
from abc import ABC, abstractmethod
from collections import defaultdict
from copy import deepcopy
from os.path import exists as opexists
from os.path import join as opjoin
from typing import Any, Mapping, Optional, Sequence, Union
import numpy as np
import torch
from biotite.structure import AtomArray
from protenix.data.constants import STD_RESIDUES, rna_order_with_x
from protenix.data.msa_utils import (
PROT_TYPE_NAME,
FeatureDict,
add_assembly_features,
clip_msa,
convert_monomer_features,
get_identifier_func,
load_and_process_msa,
make_sequence_features,
merge_features_from_prot_rna,
msa_parallel,
pair_and_merge,
rna_merge,
)
from protenix.data.tokenizer import TokenArray
from protenix.utils.logger import get_logger
logger = get_logger(__name__)
SEQ_LIMITS = {
"uniref100": -1,
"mmseqs_other": -1,
"uniclust30": -1,
"rfam": 10000,
"rnacentral": 10000,
"nucleotide": 10000,
}
MSA_MAX_SIZE = 16384
class BaseMSAFeaturizer(ABC):
def __init__(
self,
indexing_method: str = "sequence",
merge_method: str = "dense_max",
seq_limits: Optional[dict[str, int]] = {},
max_size: int = 16384,
**kwargs,
):
"""
Initializes the BaseMSAFeaturizer with the specified parameters.
Args:
indexing_method (str): The method used for indexing the MSA. Defaults to "sequence".
merge_method (str): The method used for merging MSA features. Defaults to "dense_max".
seq_limits (Optional[dict[str, int]]): Dictionary specifying sequence limits for different databases. Defaults to an empty dictionary.
max_size (int): The maximum size of the MSA. Defaults to 16384.
**kwargs: Additional keyword arguments.
Raises:
AssertionError: If the provided `merge_method` or `indexing_method` is not valid.
"""
assert merge_method in ["dense_max", "dense_min", "sparse"]
assert indexing_method in [
"sequence",
"pdb_id",
"pdb_id_entity_id",
], f"Unknown indexing method: {indexing_method}"
self.indexing_method = indexing_method
self.merge_method = merge_method
self.seq_limits = seq_limits
self.max_size = max_size
@abstractmethod
def get_msa_path(self):
pass
@abstractmethod
def process_single_sequence(self):
pass
def get_entity_ids(
self, bioassembly_dict: Mapping[str, Any], msa_entity_type: str = "prot"
) -> set[str]:
"""
Extracts the entity IDs that match the specified MSA entity type from the bioassembly dictionary.
Args:
bioassembly_dict (Mapping[str, Any]): The bioassembly dictionary containing entity information.
msa_entity_type (str): The type of MSA entity to filter by. Defaults to "prot".
Returns:
set[str]: A set of entity IDs that match the specified MSA entity type.
Raises:
AssertionError: If the provided `msa_entity_type` is not "prot" or "rna".
"""
assert msa_entity_type in ["prot", "rna"], "only protein and rna might have msa"
poly_type_mapping = {
"prot": "polypeptide",
"rna": "polyribonucleotide",
"dna": "polydeoxyribonucleotide",
}
entity_poly_type = bioassembly_dict["entity_poly_type"]
entity_ids: set[str] = {
entity_id
for entity_id, poly_type in entity_poly_type.items()
if poly_type_mapping[msa_entity_type] in poly_type
}
return entity_ids
def get_selected_asym_ids(
self,
bioassembly_dict: Mapping[str, Any],
entity_to_asym_id_int: Mapping[str, Sequence[int]],
selected_token_indices: Optional[torch.Tensor],
entity_ids: set[str],
) -> tuple[set[int], set[int], dict[int, str], dict[int, str], dict[str, str]]:
"""
Extracts the selected asym IDs based on the provided bioassembly dictionary and entity IDs.
Args:
bioassembly_dict (Mapping[str, Any]): The bioassembly dictionary containing entity information.
entity_to_asym_id_int (Mapping[str, Sequence[int]]): Mapping from entity ID to asym ID integers.
selected_token_indices (Optional[torch.Tensor]): Indices of selected tokens.
entity_ids (set[str]): Set of entity IDs to consider.
Returns:
tuple: A tuple containing:
- selected_asym_ids (set[int]): Set of selected asym IDs.
- asym_id_ints (set[int]): Set of asym ID integers.
- asym_to_entity_id (dict[int, str]): Mapping from asym ID integers to entity IDs.
- asym_id_int_to_sequence (dict[int, str]): Mapping from asym ID integers to sequences.
- entity_id_to_sequence (dict[str, str]): Mapping from entity IDs to sequences.
"""
asym_to_entity_id: dict[int, str] = {}
# Only count the selected Prot/RNA entities, many-to-one mapping
for entity_id, asym_id_int_list in entity_to_asym_id_int.items():
if entity_id in entity_ids:
for asym_id_int in asym_id_int_list:
asym_to_entity_id[asym_id_int] = entity_id
entity_id_to_sequence = {
k: v
for (k, v) in bioassembly_dict["sequences"].items()
if k in entity_ids and k in entity_to_asym_id_int
}
asym_id_ints = set(
[
asym_id_int
for (asym_id_int, entity_id) in asym_to_entity_id.items()
if entity_id in entity_ids
]
)
# Only count Prot/RNA chains, many-to-one mapping
asym_id_int_to_sequence = {
asym_id_int: entity_id_to_sequence[entity_id]
for (asym_id_int, entity_id) in asym_to_entity_id.items()
}
atom_array = bioassembly_dict["atom_array"]
token_array = bioassembly_dict["token_array"]
if selected_token_indices is None:
selected_asym_ids = set(
[
atom_array[idx].asym_id_int
for idx in token_array.get_annotation("centre_atom_index")
]
)
else:
selected_asym_ids = set(
[
atom_array[idx].asym_id_int
for idx in token_array[selected_token_indices].get_annotation(
"centre_atom_index"
)
]
)
return (
selected_asym_ids,
asym_id_ints,
asym_to_entity_id,
asym_id_int_to_sequence,
entity_id_to_sequence,
)
def get_msa_pipeline(
self,
is_homomer_or_monomer: bool,
selected_asym_ids: set[int],
asym_to_entity_id: dict[int, str],
asym_id_int_to_sequence: dict[int, str],
entity_id_to_sequence: dict[str, str],
bioassembly_dict: Mapping[str, Any],
entity_to_asym_id_int: Mapping[str, Sequence[int]],
msa_entity_type="prot",
) -> Optional[dict[str, np.ndarray]]:
"""
Processes the MSA pipeline for the given bioassembly dictionary and selected asym IDs.
Args:
is_homomer_or_monomer (bool): Indicates if the sequence is a homomer or monomer.
selected_asym_ids (set[int]): Set of selected asym IDs.
asym_to_entity_id (dict[int, str]): Mapping from asym ID integers to entity IDs.
asym_id_int_to_sequence (dict[int, str]): Mapping from asym ID integers to sequences.
entity_id_to_sequence (dict[str, str]): Mapping from entity IDs to sequences.
bioassembly_dict (Mapping[str, Any]): The bioassembly dictionary containing entity information.
entity_to_asym_id_int (Mapping[str, Sequence[int]]): Mapping from entity ID to asym ID integers.
msa_entity_type (str): The type of MSA entity to process. Defaults to "prot".
Returns:
Optional[dict[str, np.ndarray]]: A dictionary containing the processed MSA features, or None if no features are processed.
Raises:
AssertionError: If `msa_entity_type` is "rna" and `is_homomer_or_monomer` is False.
"""
if msa_entity_type == "rna":
assert is_homomer_or_monomer, "RNA MSAs do not pairing"
pdb_id = bioassembly_dict["pdb_id"]
sequence_to_features: dict[str, dict[str, Any]] = {}
for entity_id, sequence in entity_id_to_sequence.items():
if sequence in sequence_to_features:
# It is possible that different entity ids correspond to the same sequence
continue
if all(
[
asym_id_int not in selected_asym_ids
for asym_id_int in entity_to_asym_id_int[entity_id]
]
):
# All chains corresponding to this entity are not selected
continue
sequence_feat = self.process_single_sequence(
pdb_name=f"{pdb_id}_{entity_id}",
sequence=sequence,
pdb_id=pdb_id,
is_homomer_or_monomer=is_homomer_or_monomer,
)
sequence_feat = convert_monomer_features(sequence_feat)
sequence_to_features[sequence] = sequence_feat
all_chain_features = {
asym_id_int: deepcopy(sequence_to_features[seq])
for asym_id_int, seq in asym_id_int_to_sequence.items()
if seq in sequence_to_features
}
del sequence_to_features
if len(all_chain_features) == 0:
return None
np_example = merge_all_chain_features(
pdb_id=pdb_id,
all_chain_features=all_chain_features,
asym_to_entity_id=asym_to_entity_id,
is_homomer_or_monomer=is_homomer_or_monomer,
merge_method=self.merge_method,
max_size=self.max_size,
msa_entity_type=msa_entity_type,
)
return np_example
class PROTMSAFeaturizer(BaseMSAFeaturizer):
def __init__(
self,
dataset_name: str = "",
seq_to_pdb_idx_path: str = "",
distillation_index_file: str = None,
indexing_method: str = "sequence",
pairing_db: Optional[str] = "",
non_pairing_db: str = "mmseqs_all",
merge_method: str = "dense_max",
seq_limits: Optional[dict[str, int]] = {},
max_size: int = 16384,
pdb_jackhmmer_dir: str = None,
pdb_mmseqs_dir: str = None,
distillation_mmseqs_dir: str = None,
distillation_uniclust_dir: str = None,
**kwargs,
):
super().__init__(
indexing_method=indexing_method,
merge_method=merge_method,
seq_limits=seq_limits,
max_size=max_size,
**kwargs,
)
self.dataset_name = dataset_name
self.pdb_jackhmmer_dir = pdb_jackhmmer_dir
self.pdb_mmseqs_dir = pdb_mmseqs_dir
self.distillation_mmseqs_dir = distillation_mmseqs_dir
self.distillation_uniclust_dir = distillation_uniclust_dir
self.pairing_db = pairing_db if len(pairing_db) > 0 else None
if non_pairing_db == "mmseqs_all":
self.non_pairing_db = ["uniref100", "mmseqs_other"]
else:
self.non_pairing_db = [db_name for db_name in non_pairing_db.split(",")]
with open(seq_to_pdb_idx_path, "r") as f:
self.seq_to_pdb_idx = json.load(f)
# If distillation data is avaiable
if distillation_index_file is not None:
with open(distillation_index_file, "r") as f:
self.distillation_pdb_id_to_msa_dir = json.load(f)
else:
self.distillation_pdb_id_to_msa_dir = None
def get_msa_path(self, db_name: str, sequence: str, pdb_id: str) -> str:
"""
Get the path of an MSA file
Args:
db_name (str): name of genomics database
sequence (str): input sequence
pdb_id (str): pdb_id of input sequence
Returns:
str: file path
"""
if self.indexing_method == "pdb_id" and self.distillation_pdb_id_to_msa_dir:
rel_path = self.distillation_pdb_id_to_msa_dir[pdb_id]
if db_name == "uniclust30":
msa_dir_path = opjoin(self.distillation_uniclust_dir, rel_path)
elif db_name in ["uniref100", "mmseqs_other"]:
msa_dir_path = opjoin(self.distillation_mmseqs_dir, rel_path)
else:
raise ValueError(
f"Indexing with {self.indexing_method} is not supported for {db_name}"
)
if opexists(msa_path := opjoin(msa_dir_path, f"{db_name}_hits.a3m")):
return msa_path
else:
return opjoin(msa_dir_path, f"{db_name}.a3m")
else:
# indexing_method == "sequence"
pdb_index = self.seq_to_pdb_idx[sequence]
if db_name in ["uniref100", "mmseqs_other"]:
return opjoin(
self.pdb_mmseqs_dir, str(pdb_index), f"{db_name}_hits.a3m"
)
else:
return opjoin(
self.pdb_jackhmmer_dir,
f"pdb_on_{db_name}",
"results",
f"{pdb_index}.a3m",
)
def process_single_sequence(
self,
pdb_name: str,
sequence: str,
pdb_id: str,
is_homomer_or_monomer: bool,
) -> dict[str, np.ndarray]:
"""
Get basic MSA features for a single sequence.
Args:
pdb_name (str): f"{pdb_id}_{entity_id}" of the input entity
sequence (str): input sequnce
pdb_id (str): pdb_id of input sequence
is_homomer_or_monomer (bool): True if the input sequence is a homomer or a monomer
Returns:
Dict[str, np.ndarray]: the basic MSA features of the input sequence
"""
raw_msa_paths, seq_limits = [], []
for db_name in self.non_pairing_db:
if opexists(
path := self.get_msa_path(db_name, sequence, pdb_id)
) and path.endswith(".a3m"):
raw_msa_paths.append(path)
seq_limits.append(self.seq_limits.get(db_name, SEQ_LIMITS[db_name]))
# Get sequence and non-pairing msa features
sequence_features = process_single_sequence(
pdb_name=pdb_name,
sequence=sequence,
raw_msa_paths=raw_msa_paths,
seq_limits=seq_limits,
msa_entity_type="prot",
msa_type="non_pairing",
)
# Get pairing msa features
if not is_homomer_or_monomer:
# Separately process the MSA needed for pairing
raw_msa_paths, seq_limits = [], []
if opexists(
path := self.get_msa_path(self.pairing_db, sequence, pdb_id)
) and path.endswith(".a3m"):
raw_msa_paths = [
path,
]
seq_limits.append(
self.seq_limits.get(self.pairing_db, SEQ_LIMITS[self.pairing_db])
)
if len(raw_msa_paths) == 0:
raise ValueError(f"{pdb_name} does not have MSA for pairing")
all_seq_msa_features = load_and_process_msa(
pdb_name=pdb_name,
msa_type="pairing",
raw_msa_paths=raw_msa_paths,
seq_limits=seq_limits,
identifier_func=get_identifier_func(pairing_db=self.pairing_db),
handle_empty="raise_error",
)
sequence_features.update(all_seq_msa_features)
return sequence_features
def get_msa_features_for_assembly(
self,
bioassembly_dict: Mapping[str, Any],
entity_to_asym_id_int: Mapping[str, Sequence[int]],
selected_token_indices: Optional[torch.Tensor],
) -> dict[str, np.ndarray]:
"""
Get MSA features for the bioassembly.
Args:
bioassembly_dict (Mapping[str, Any]): the bioassembly dict with sequence, atom_array and token_array.
entity_to_asym_id_int (Mapping[str, Sequence[int]]): mapping from entity_id to asym_id_int.
selected_token_indices (torch.Tensor): Cropped token indices.
Returns:
Dict[str, np.ndarray]: the basic MSA features of the bioassembly.
"""
protein_entity_ids = self.get_entity_ids(
bioassembly_dict, msa_entity_type="prot"
)
if len(protein_entity_ids) == 0:
return None
(
selected_asym_ids,
asym_id_ints,
asym_to_entity_id,
asym_id_int_to_sequence,
entity_id_to_sequence,
) = self.get_selected_asym_ids(
bioassembly_dict=bioassembly_dict,
entity_to_asym_id_int=entity_to_asym_id_int,
selected_token_indices=selected_token_indices,
entity_ids=protein_entity_ids,
)
# No pairing_db specified (all proteins are treated as monomers) or only one sequence
is_homomer_or_monomer = (self.pairing_db is None) or (
len(
set(
[
asym_id_int_to_sequence[asym_id_int]
for asym_id_int in selected_asym_ids
if asym_id_int in asym_id_ints
]
)
)
== 1
)
np_example = self.get_msa_pipeline(
is_homomer_or_monomer=is_homomer_or_monomer,
selected_asym_ids=selected_asym_ids,
asym_to_entity_id=asym_to_entity_id,
asym_id_int_to_sequence=asym_id_int_to_sequence,
entity_id_to_sequence=entity_id_to_sequence,
bioassembly_dict=bioassembly_dict,
entity_to_asym_id_int=entity_to_asym_id_int,
msa_entity_type="prot",
)
return np_example
class RNAMSAFeaturizer(BaseMSAFeaturizer):
def __init__(
self,
seq_to_pdb_idx_path: str = "",
indexing_method: str = "sequence",
merge_method: str = "dense_max",
seq_limits: Optional[dict[str, int]] = {},
max_size: int = 16384,
rna_msa_dir: str = None,
**kwargs,
) -> None:
super().__init__(
indexing_method=indexing_method,
merge_method=merge_method,
seq_limits=seq_limits,
max_size=max_size,
**kwargs,
)
# By default, use all the database in paper
self.rna_msa_dir = rna_msa_dir
self.non_pairing_db = ["rfam", "rnacentral", "nucleotide"]
with open(seq_to_pdb_idx_path, "r") as f:
self.seq_to_pdb_idx = json.load(f) # it's rna sequence to pdb list
def get_msa_path(
self, db_name: str, sequence: str, pdb_id_entity_id: str, reduced: bool = True
) -> str:
"""
Get the path of an RNA MSA file
Args:
db_name (str): genetics databases for RNA chains
sequence (str): input sequence
pdb_id_entity_id (str): pdb_id_entity_id of input sequence
reduced (bool): whether reduce the sto files to max 1w
Returns:
str: file path
"""
assert self.indexing_method in [
"pdb_id_entity_id",
"sequence",
], "use the pdb_id_entity_id or sequence to search msa dir"
if reduced:
suffix = "_max_1w"
else:
suffix = ""
if self.indexing_method == "sequence":
# only the first pdb save the rna msa
if sequence in self.seq_to_pdb_idx:
pdb_id_entity_id = self.seq_to_pdb_idx[sequence][0]
else:
logger.info(f"{pdb_id_entity_id} not in seq_to_pdb_idx")
pdb_id_entity_id = "not_exist"
rel_path = f"{pdb_id_entity_id}/{db_name}.sto"
msa_dir_path = opjoin(f"{self.rna_msa_dir}{suffix}", rel_path)
return msa_dir_path
def process_single_sequence(
self,
pdb_name: str,
sequence: str,
pdb_id: str,
is_homomer_or_monomer: bool,
) -> dict[str, np.ndarray]:
"""
Get basic MSA features for a single sequence.
Args:
pdb_name (str): f"{pdb_id}_{entity_id}" of the input entity
sequence (str): input sequnce
pdb_id (str): pdb_id of input sequence
is_homomer_or_monomer (bool): True if the input sequence is a homomer or a monomer
Returns:
Dict[str, np.ndarray]: the basic MSA features of the input sequence
"""
raw_msa_paths, seq_limits = [], []
for db_name in self.non_pairing_db:
if opexists(
path := self.get_msa_path(db_name, sequence, pdb_name)
) and path.endswith(".sto"):
raw_msa_paths.append(path)
seq_limits.append(self.seq_limits.get(db_name, SEQ_LIMITS[db_name]))
sequence_features = process_single_sequence(
pdb_name=pdb_name,
sequence=sequence,
raw_msa_paths=raw_msa_paths,
seq_limits=seq_limits,
msa_entity_type="rna",
msa_type="non_pairing",
)
return sequence_features
def get_msa_features_for_assembly(
self,
bioassembly_dict: Mapping[str, Any],
entity_to_asym_id_int: Mapping[str, Sequence[int]],
selected_token_indices: Optional[torch.Tensor],
) -> dict[str, np.ndarray]:
"""
Get MSA features for the bioassembly.
Args:
bioassembly_dict (Mapping[str, Any]): the bioassembly dict with sequence, atom_array and token_array.
entity_to_asym_id_int (Mapping[str, Sequence[int]]): mapping from entity_id to asym_id_int.
selected_token_indices (torch.Tensor): Cropped token indices.
Returns:
Dict[str, np.ndarray]: the basic MSA features of the bioassembly.
"""
rna_entity_ids = self.get_entity_ids(bioassembly_dict, msa_entity_type="rna")
if len(rna_entity_ids) == 0:
return None
(
selected_asym_ids,
asym_id_ints,
asym_to_entity_id,
asym_id_int_to_sequence,
entity_id_to_sequence,
) = self.get_selected_asym_ids(
bioassembly_dict=bioassembly_dict,
entity_to_asym_id_int=entity_to_asym_id_int,
selected_token_indices=selected_token_indices,
entity_ids=rna_entity_ids,
)
is_homomer_or_monomer = True
np_example = self.get_msa_pipeline(
is_homomer_or_monomer=is_homomer_or_monomer,
selected_asym_ids=selected_asym_ids,
asym_to_entity_id=asym_to_entity_id,
asym_id_int_to_sequence=asym_id_int_to_sequence,
entity_id_to_sequence=entity_id_to_sequence,
bioassembly_dict=bioassembly_dict,
entity_to_asym_id_int=entity_to_asym_id_int,
msa_entity_type="rna",
)
return np_example
class MSAFeaturizer:
def __init__(
self,
prot_msa_args: dict = {},
rna_msa_args: dict = {},
enable_rna_msa: bool = False,
):
self.prot_msa_featurizer = PROTMSAFeaturizer(**prot_msa_args)
self.enable_rna_msa = enable_rna_msa
if self.enable_rna_msa:
self.rna_msa_featurizer = RNAMSAFeaturizer(**rna_msa_args)
def __call__(
self,
bioassembly_dict: dict[str, Any],
selected_indices: np.ndarray,
entity_to_asym_id_int: Mapping[str, int],
) -> Optional[dict[str, np.ndarray]]:
"""
Processes the bioassembly dictionary to generate MSA features for both protein and RNA entities, if enabled.
Args:
bioassembly_dict (dict[str, Any]): The bioassembly dictionary containing entity information.
selected_indices (np.ndarray): Indices of selected tokens.
entity_to_asym_id_int (Mapping[str, int]): Mapping from entity ID to asym ID integers.
Returns:
Optional[dict[str, np.ndarray]]: A dictionary containing the merged MSA features for the bioassembly, or None if no features are generated.
"""
prot_msa_feats = self.prot_msa_featurizer.get_msa_features_for_assembly(
bioassembly_dict=bioassembly_dict,
entity_to_asym_id_int=entity_to_asym_id_int,
selected_token_indices=selected_indices,
)
if self.enable_rna_msa:
rna_msa_feats = self.rna_msa_featurizer.get_msa_features_for_assembly(
bioassembly_dict=bioassembly_dict,
entity_to_asym_id_int=entity_to_asym_id_int,
selected_token_indices=selected_indices,
)
else:
rna_msa_feats = None
np_chains_list = []
if prot_msa_feats is not None:
np_chains_list.append(prot_msa_feats)
if rna_msa_feats is not None:
np_chains_list.append(rna_msa_feats)
if len(np_chains_list) == 0:
return None
msa_feats = merge_features_from_prot_rna(np_chains_list)
msa_feats = self.tokenize(
msa_feats=msa_feats,
token_array=bioassembly_dict["token_array"],
atom_array=bioassembly_dict["atom_array"],
)
return msa_feats
def tokenize(
self,
msa_feats: Mapping[str, np.ndarray],
token_array: TokenArray,
atom_array: AtomArray,
) -> dict[str, np.ndarray]:
"""
Tokenize raw MSA features.
Args:
msa_feats (Dict[str, np.ndarray]): raw MSA features.
token_array (TokenArray): token array of this bioassembly
atom_array (AtomArray): atom array of this bioassembly
Returns:
Dict[str, np.ndarray]: the tokenized MSA features of the bioassembly.
"""
msa_feats = tokenize_msa(
msa_feats=msa_feats, token_array=token_array, atom_array=atom_array
)
# Add to tracking for msa analysis
msa_feats.update(
{
"prot_pair_num_alignments": msa_feats.get(
"prot_pair_num_alignments", np.asarray(0, dtype=np.int32)
),
"prot_unpair_num_alignments": msa_feats.get(
"prot_unpair_num_alignments", np.asarray(0, dtype=np.int32)
),
"rna_pair_num_alignments": msa_feats.get(
"rna_pair_num_alignments", np.asarray(0, dtype=np.int32)
),
"rna_unpair_num_alignments": msa_feats.get(
"rna_unpair_num_alignments", np.asarray(0, dtype=np.int32)
),
}
)
return {
k: v
for (k, v) in msa_feats.items()
if k
in ["msa", "has_deletion", "deletion_value", "deletion_mean", "profile"]
+ [
"prot_pair_num_alignments",
"prot_unpair_num_alignments",
"rna_pair_num_alignments",
"rna_unpair_num_alignments",
]
}
# Common function for train and inference
def process_single_sequence(
pdb_name: str,
sequence: str,
raw_msa_paths: Optional[list[str]],
seq_limits: Optional[list[str]],
msa_entity_type: str = "prot",
msa_type: str = "non_pairing",
) -> FeatureDict:
"""
Processes a single sequence to generate sequence and MSA features.
Args:
pdb_name (str): The name of the PDB entry.
sequence (str): The input sequence.
raw_msa_paths (Optional[list[str]]): List of paths to raw MSA files.
seq_limits (Optional[list[str]]): List of sequence limits for different databases.
msa_entity_type (str): The type of MSA entity, either "prot" or "rna". Defaults to "prot".
msa_type (str): The type of MSA, either "non_pairing" or "pairing". Defaults to "non_pairing".
Returns:
FeatureDict: A dictionary containing the sequence and MSA features.
Raises:
AssertionError: If `msa_entity_type` is not "prot" or "rna".
"""
assert msa_entity_type in ["prot", "rna"]
num_res = len(sequence)
if msa_entity_type == "prot":
sequence_features = make_sequence_features(
sequence=sequence,
num_res=num_res,
)
elif msa_entity_type == "rna":
sequence_features = make_sequence_features(
sequence=sequence,
num_res=num_res,
mapping=rna_order_with_x,
x_token="N",
)
msa_features = load_and_process_msa(
pdb_name=pdb_name,
msa_type=msa_type,
raw_msa_paths=raw_msa_paths,
seq_limits=seq_limits,
input_sequence=sequence,
msa_entity_type=msa_entity_type,
)
sequence_features.update(msa_features)
return sequence_features
# Common function for train and inference
def tokenize_msa(
msa_feats: Mapping[str, np.ndarray],
token_array: TokenArray,
atom_array: AtomArray,
) -> dict[str, np.ndarray]:
"""
Tokenize raw MSA features.
Args:
msa_feats (Dict[str, np.ndarray]): raw MSA features.
token_array (TokenArray): token array of this bioassembly
atom_array (AtomArray): atom array of this bioassembly
Returns:
Dict[str, np.ndarray]: the tokenized MSA features of the bioassembly.
"""
token_center_atom_idxs = token_array.get_annotation("centre_atom_index")
# res_id: (asym_id, residue_index)
# msa_idx refers to the column number of a residue in the msa array
res_id_2_msa_idx = {
(msa_feats["asym_id"][idx], msa_feats["residue_index"][idx]): idx
for idx in range(msa_feats["msa"].shape[1])
}
restypes = []
col_idxs_in_msa = []
col_idxs_in_new_msa = []
for token_idx, center_atom_idx in enumerate(token_center_atom_idxs):
restypes.append(STD_RESIDUES[atom_array.cano_seq_resname[center_atom_idx]])
if (
res_id := (
atom_array[center_atom_idx].asym_id_int,
atom_array[center_atom_idx].res_id,
)
) in res_id_2_msa_idx:
col_idxs_in_msa.append(res_id_2_msa_idx[res_id])
col_idxs_in_new_msa.append(token_idx)
num_msa_seq, _ = msa_feats["msa"].shape
num_tokens = len(token_center_atom_idxs)
restypes = np.array(restypes)
col_idxs_in_new_msa = np.array(col_idxs_in_new_msa)
col_idxs_in_msa = np.array(col_idxs_in_msa)
# msa
# For non-amino acid tokens, copy the token itself
feat_name = "msa"
new_feat = np.repeat(restypes[None, ...], num_msa_seq, axis=0)
new_feat[:, col_idxs_in_new_msa] = msa_feats[feat_name][:, col_idxs_in_msa]
msa_feats[feat_name] = new_feat
# has_deletion, deletion_value
# Assign 0 to non-amino acid tokens
for feat_name in ["has_deletion", "deletion_value"]:
new_feat = np.zeros((num_msa_seq, num_tokens), dtype=msa_feats[feat_name].dtype)
new_feat[:, col_idxs_in_new_msa] = msa_feats[feat_name][:, col_idxs_in_msa]
msa_feats[feat_name] = new_feat
# deletion_mean
# Assign 0 to non-amino acid tokens
feat_name = "deletion_mean"
new_feat = np.zeros((num_tokens,))
new_feat[col_idxs_in_new_msa] = msa_feats[feat_name][col_idxs_in_msa]
msa_feats[feat_name] = new_feat
# profile
# Assign one-hot enbedding (one-hot distribution) to non-amino acid tokens corresponding to restype
feat_name = "profile"
new_feat = np.zeros((num_tokens, 32))
new_feat[np.arange(num_tokens), restypes] = 1
new_feat[col_idxs_in_new_msa, :] = msa_feats[feat_name][col_idxs_in_msa, :]
msa_feats[feat_name] = new_feat
return msa_feats
# Common function for train and inference
def merge_all_chain_features(
pdb_id: str,
all_chain_features: dict[str, FeatureDict],
asym_to_entity_id: dict,
is_homomer_or_monomer: bool = False,
merge_method: str = "dense_max",
max_size: int = 16384,
msa_entity_type: str = "prot",
) -> dict[str, np.ndarray]:
"""
Merges features from all chains in the bioassembly.
Args:
pdb_id (str): The PDB ID of the bioassembly.
all_chain_features (dict[str, FeatureDict]): Features for each chain in the bioassembly.
asym_to_entity_id (dict): Mapping from asym ID to entity ID.
is_homomer_or_monomer (bool): Indicates if the bioassembly is a homomer or monomer. Defaults to False.
merge_method (str): Method used for merging features. Defaults to "dense_max".
max_size (int): Maximum size of the MSA. Defaults to 16384.
msa_entity_type (str): Type of MSA entity, either "prot" or "rna". Defaults to "prot".
Returns:
dict[str, np.ndarray]: Merged features for the bioassembly.
"""
all_chain_features = add_assembly_features(
pdb_id,
all_chain_features,
asym_to_entity_id=asym_to_entity_id,
)
if msa_entity_type == "rna":
np_example = rna_merge(
is_homomer_or_monomer=is_homomer_or_monomer,
all_chain_features=all_chain_features,
merge_method=merge_method,
msa_crop_size=max_size,
)
elif msa_entity_type == "prot":
np_example = pair_and_merge(
is_homomer_or_monomer=is_homomer_or_monomer,
all_chain_features=all_chain_features,
merge_method=merge_method,
msa_crop_size=max_size,
)
np_example = clip_msa(np_example, max_num_msa=max_size)
return np_example
class InferenceMSAFeaturizer(object):
# Now we only support protein msa in inference
@staticmethod
def process_prot_single_sequence(
sequence: str,
description: str,
is_homomer_or_monomer: bool,
msa_dir: Union[str, None],
pairing_db: str,
) -> FeatureDict:
"""
Processes a single protein sequence to generate sequence and MSA features.
Args:
sequence (str): The input protein sequence.
description (str): Description of the sequence, typically the PDB name.
is_homomer_or_monomer (bool): Indicates if the sequence is a homomer or monomer.
msa_dir (Union[str, None]): Directory containing the MSA files, or None if no pre-computed MSA is provided.
pairing_db (str): Database used for pairing.
Returns:
FeatureDict: A dictionary containing the sequence and MSA features.
Raises:
AssertionError: If the pairing MSA file does not exist when `is_homomer_or_monomer` is False.
"""
# For non-pairing MSA
if msa_dir is None:
# No pre-computed MSA was provided, and the MSA search failed
raw_msa_paths = []
else:
raw_msa_paths = [opjoin(msa_dir, "non_pairing.a3m")]
pdb_name = description
sequence_features = process_single_sequence(
pdb_name=pdb_name,
sequence=sequence,
raw_msa_paths=raw_msa_paths,
seq_limits=[-1],
msa_entity_type="prot",
msa_type="non_pairing",
)
if not is_homomer_or_monomer:
# Separately process the pairing MSA
assert opexists(
raw_msa_path := opjoin(msa_dir, "pairing.a3m")
), f"No pairing-MSA of {pdb_name} (please check {raw_msa_path})"
all_seq_msa_features = load_and_process_msa(
pdb_name=pdb_name,
msa_type="pairing",
raw_msa_paths=[raw_msa_path],
seq_limits=[-1],
identifier_func=get_identifier_func(
pairing_db=pairing_db,
),
handle_empty="raise_error",
)
sequence_features.update(all_seq_msa_features)
return sequence_features
@staticmethod
def get_inference_prot_msa_features_for_assembly(
bioassembly: Sequence[Mapping[str, Mapping[str, Any]]],
entity_to_asym_id: Mapping[str, set[int]],
) -> FeatureDict:
"""
Processes the bioassembly to generate MSA features for protein entities in inference mode.
Args:
bioassembly (Sequence[Mapping[str, Mapping[str, Any]]]): The bioassembly containing entity information.
entity_to_asym_id (Mapping[str, set[int]]): Mapping from entity ID to asym ID integers.
Returns:
FeatureDict: A dictionary containing the MSA features for the protein entities.
Raises:
AssertionError: If the provided precomputed MSA path does not exist.
"""
entity_to_asym_id_int = dict(entity_to_asym_id)
asym_to_entity_id = {}
entity_id_to_sequence = {}
# In inference mode, the keys in bioassembly is different from training
# Only contains protein entity, many-to-one mapping
entity_id_to_sequence = {}
for i, entity_info_wrapper in enumerate(bioassembly):
entity_id = str(i + 1)
entity_type = list(entity_info_wrapper.keys())[0]
entity_info = entity_info_wrapper[entity_type]
if entity_type == PROT_TYPE_NAME:
# Update entity_id_to_sequence
entity_id_to_sequence[entity_id] = entity_info["sequence"]
# Update asym_to_entity_id
for asym_id_int in entity_to_asym_id_int[entity_id]:
asym_to_entity_id[asym_id_int] = entity_id
if len(entity_id_to_sequence) == 0:
# No protein entity
return None
is_homomer_or_monomer = (
len(set(entity_id_to_sequence.values())) == 1
) # Only one protein sequence
sequence_to_entity = defaultdict(list)
for entity_id, seq in entity_id_to_sequence.items():
sequence_to_entity[seq].append(entity_id)
sequence_to_features: dict[str, dict[str, Any]] = {}
msa_sequences = {}
msa_dirs = {}
for idx, (sequence, entity_id_list) in enumerate(sequence_to_entity.items()):
msa_info = bioassembly[int(entity_id_list[0]) - 1][PROT_TYPE_NAME]["msa"]
msa_dir = msa_info.get("precomputed_msa_dir", None)
if msa_dir is not None:
assert opexists(
msa_dir
), f"The provided precomputed MSA path of entities {entity_id_list} does not exists: \n{msa_dir}"
msa_dirs[idx] = msa_dir
else:
pairing_db_fpath = msa_info.get("pairing_db_fpath", None)
non_pairing_db_fpath = msa_info.get("non_pairing_db_fpath", None)
assert (
pairing_db_fpath is not None
), "Path of pairing MSA database is not given."
assert (
non_pairing_db_fpath is not None
), "Path of non-pairing MSA database is not given."
assert msa_info["pairing_db"] in ["uniprot", "", None], (
f"Using {msa_info['pairing_db']} as the source for MSA pairing "
f"is not supported in online MSA searching."
)
msa_info["pairing_db"] = "uniprot"
msa_sequences[idx] = (sequence, pairing_db_fpath, non_pairing_db_fpath)
if len(msa_sequences) > 0:
msa_dirs.update(msa_parallel(msa_sequences))
for idx, (sequence, entity_id_list) in enumerate(sequence_to_entity.items()):
if len(entity_id_list) > 1:
logger.info(
f"Entities {entity_id_list} correspond to the same sequence."
)
msa_info = bioassembly[int(entity_id_list[0]) - 1][PROT_TYPE_NAME]["msa"]
msa_dir = msa_dirs[idx]
description = f"entity_{'_'.join(map(str, entity_id_list))}"
sequence_feat = InferenceMSAFeaturizer.process_prot_single_sequence(
sequence=sequence,
description=description,
is_homomer_or_monomer=is_homomer_or_monomer,
msa_dir=msa_dir,
pairing_db=msa_info["pairing_db"],
)
sequence_feat = convert_monomer_features(sequence_feat)
sequence_to_features[sequence] = sequence_feat
if msa_dir and opexists(msa_dir) and idx in msa_sequences.keys():
if (msa_save_dir := msa_info.get("msa_save_dir", None)) is not None:
if opexists(dst_dir := opjoin(msa_save_dir, str(idx + 1))):
shutil.rmtree(dst_dir)
shutil.copytree(msa_dir, dst_dir)
for fname in os.listdir(dst_dir):
if not fname.endswith(".a3m"):
os.remove(opjoin(dst_dir, fname))
else:
shutil.rmtree(msa_dir)
all_chain_features = {
asym_id_int: deepcopy(
sequence_to_features[entity_id_to_sequence[entity_id]]
)
for asym_id_int, entity_id in asym_to_entity_id.items()
if seq in sequence_to_features
}
if len(all_chain_features) == 0:
return None
np_example = merge_all_chain_features(
pdb_id="test_assembly",
all_chain_features=all_chain_features,
asym_to_entity_id=asym_to_entity_id,
is_homomer_or_monomer=is_homomer_or_monomer,
merge_method="dense_max",
max_size=MSA_MAX_SIZE,
msa_entity_type="prot",
)
return np_example
def make_msa_feature(
bioassembly: Sequence[Mapping[str, Mapping[str, Any]]],
entity_to_asym_id: Mapping[str, Sequence[str]],
token_array: TokenArray,
atom_array: AtomArray,
) -> Optional[dict[str, np.ndarray]]:
"""
Processes the bioassembly to generate MSA features for protein entities in inference mode and tokenizes the features.
Args:
bioassembly (Sequence[Mapping[str, Mapping[str, Any]]]): The bioassembly containing entity information.
entity_to_asym_id (Mapping[str, Sequence[str]]): Mapping from entity ID to asym ID strings.
token_array (TokenArray): Token array of the bioassembly.
atom_array (AtomArray): Atom array of the bioassembly.
Returns:
Optional[dict[str, np.ndarray]]: A dictionary containing the tokenized MSA features for the protein entities,
or an empty dictionary if no features are generated.
"""
msa_feats = InferenceMSAFeaturizer.get_inference_prot_msa_features_for_assembly(
bioassembly=bioassembly,
entity_to_asym_id=entity_to_asym_id,
)
if msa_feats is None:
return {}
msa_feats = tokenize_msa(
msa_feats=msa_feats,
token_array=token_array,
atom_array=atom_array,
)
return {
k: v
for (k, v) in msa_feats.items()
if k
in ["msa", "has_deletion", "deletion_value", "deletion_mean", "profile"]
}
|