File size: 9,826 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
from collections import defaultdict
import numpy as np
from rdkit import Chem
def neutralize_atoms(mol: Chem.Mol):
pattern = Chem.MolFromSmarts(
"[+1!h0!$([*]~[-1,-2,-3,-4]),-1!#4!#5!$([*]~[+1,+2,+3,+4])]"
)
at_matches = mol.GetSubstructMatches(pattern)
at_matches_list = [y[0] for y in at_matches]
if len(at_matches_list) > 0:
for at_idx in at_matches_list:
atom = mol.GetAtomWithIdx(at_idx)
chg = atom.GetFormalCharge()
hcount = atom.GetTotalNumHs()
atom.SetFormalCharge(0)
atom.SetNumExplicitHs(hcount - chg)
atom.UpdatePropertyCache()
return mol
def recursive_permutation(atom_inds, permutation_list, res):
def _permute_atom_ind(atom_inds, permutation):
# atom_inds: list of atom (positional) indices
# permutation: values to be permutated in the given order
permute_inds = [i for i, a in enumerate(atom_inds) if a in permutation]
for i, perm_ind in enumerate(permute_inds):
atom_inds[perm_ind] = permutation[i]
return atom_inds
if len(permutation_list) == 0:
res.append(atom_inds)
else:
current_permutation_list = permutation_list.copy()
for permutation in current_permutation_list.pop(0):
atom_inds_permed = _permute_atom_ind(atom_inds.copy(), permutation)
recursive_permutation(atom_inds_permed, current_permutation_list, res)
def augment_atom_maps_with_conjugate_terminal_groups(
original_maps, atomic_number_mapping, terminal_group_tuples, MaxMatches=1e6
):
"""
Augment atom maps from GetSubstructMatches with extra symmetry from confjugated terminal groups.
Parameters
--------------
original_maps: Tuple(Tuples), all possible atom index mappings, note we require that the mappings should range from 0 to n_heavy_atom-1 (a.k.a. no gap in indexing)
atomic_number_mapping: dict, mapping from atom (positional) indices to its atomic numbers, for splitting/removing different types of atoms in each terminal group
terminal_group_tuples: Tuple(Tuples), a group of pair of atoms whose bonds match the SMARTS string. Ex: ((0, 1), (2, 1), (10, 9), (11, 9), (12, 9), (14, 13), (15, 13))
MaxMatches: int, cutoff for total number of matches (n_original_perm * n_conjugate perm)
Returns
--------------
augmented_maps: Tuple(Tuples) , original_maps augmented by muliplying the permutations induced by terminal_group_tuples.
"""
def _terminal_atom_cluster_from_pairs(edges):
graph = defaultdict(set)
for u, v in edges:
graph[u].add(v)
graph[v].add(u)
return graph
def _split_sets_by_mapped_values(list_of_sets, mapping):
result = []
for s in list_of_sets:
mapped_sets = {}
for elem in s:
mapped_value = mapping.get(elem)
if mapped_value not in mapped_sets:
mapped_sets[mapped_value] = set()
mapped_sets[mapped_value].add(elem)
result.extend(mapped_sets.values())
return result
# group terminal group tuples with common atom_indices: [{0, 2}, {10, 11, 12}, {14, 15}]
terminal_atom_clusters = _terminal_atom_cluster_from_pairs(terminal_group_tuples)
MaxTerminalGroups = max(
1, int(np.ceil(np.emath.logn(3, MaxMatches / len(original_maps))))
)
# if MaxTerminalGroups is less than the total number terminal groups, sample the first {MaxTerminalGroups} groups (to remove randomness)
perm_groups = sorted(
[
atom_inds
for common_id, atom_inds in terminal_atom_clusters.items()
if len(atom_inds) > 1
]
)[: min(MaxTerminalGroups, len(terminal_atom_clusters))]
# within each terminal group, if there are different atom types, split by atom type (if only one left, discard)
perm_groups = _split_sets_by_mapped_values(perm_groups, atomic_number_mapping)
perm_groups = [p for p in perm_groups if len(p) > 1]
# all permutations according to symmetric conjugate terminal atoms: [[(0, 2), (2, 0)], [(10, 11, 12), (10, 12, 11), (11, 10, 12), (11, 12, 10), (12, 10, 11), (12, 11, 10)], [(14, 15), (15, 14)]]
perm_groups = [sorted(list(itertools.permutations(g))) for g in perm_groups]
# recursively permute the original mappings
augmented_maps = []
for initial_mapping in original_maps:
recursive_permutation(list(initial_mapping), perm_groups, augmented_maps)
# Convert to the same data type as in original_maps
augmented_maps = tuple(tuple(a) for a in augmented_maps)
# Remove duplicates: original_maps might have already permutated some of the conjugate_terminal group indices
return tuple(set(augmented_maps))
def _get_substructure_perms(
mol: Chem.Mol,
Neutralize: bool = False,
CheckStereochem: bool = True,
SymmetrizeConjugatedTerminal: bool = True,
MaxMatches: int = 512,
) -> np.ndarray:
"""
Args:
CheckStereochem: whether to assure stereochem does not change after permutation
Neutralize: if true, neutralize the mol before computing the permutations
SymmetrizeConjugatedTerminal: if true, consider symmetrization of conjugated terminal groups
MaxMatches: int, cutoff for total number of matches
return shape=[num_perms, num_atoms]
"""
ori_idx_w_h = []
for atom in mol.GetAtoms():
atom.SetProp("ori_idx_w_h", str(atom.GetIdx()))
ori_idx_w_h.append(atom.GetIdx())
# Attention !!!
# Remove Hs; Otherwise, there will be too many matches.
mol = Chem.RemoveHs(mol)
if Neutralize:
mol = neutralize_atoms(mol)
# Get substructure matches
base_perms = np.array(
mol.GetSubstructMatches(mol, uniquify=False, maxMatches=MaxMatches)
)
assert len(base_perms) > 0, "no matches found, error"
# Check stereochem
if CheckStereochem:
chem_order = np.array(
list(Chem.rdmolfiles.CanonicalRankAtoms(mol, breakTies=False))
)
perms_mask = (chem_order[base_perms] == chem_order[None]).sum(
-1
) == mol.GetNumAtoms()
base_perms = base_perms[perms_mask]
# Add terminal conjugate groups
sma = "[O,N;D1;$([O,N;D1]-[*]=[O,N;D1]),$([O,N;D1]=[*]-[O,N;D1])]~[*]"
patt = Chem.MolFromSmarts(sma)
terminal_group_tuples = mol.GetSubstructMatches(patt)
if (
len(terminal_group_tuples) > 0 and SymmetrizeConjugatedTerminal
): # Only augment if there exist conjugate pairs or if user sets to
atomic_number_mapping = {
i: atom.GetAtomicNum() for i, atom in enumerate(mol.GetAtoms())
}
base_perms = augment_atom_maps_with_conjugate_terminal_groups(
tuple(tuple(a) for a in base_perms),
atomic_number_mapping,
terminal_group_tuples,
MaxMatches,
)
base_perms = np.array(base_perms)
if len(base_perms) > MaxMatches:
base_perms = base_perms[:MaxMatches]
new_to_ori_idx_map = {}
ori_to_new_idx_map = {}
for atom in mol.GetAtoms():
ori_idx = int(atom.GetProp("ori_idx_w_h"))
new_idx = atom.GetIdx()
new_to_ori_idx_map[new_idx] = ori_idx
ori_to_new_idx_map[ori_idx] = new_idx
base_perms = np.vectorize(new_to_ori_idx_map.get)(base_perms)
perms = np.zeros(shape=(base_perms.shape[0], len(ori_idx_w_h)))
for i in range(len(ori_idx_w_h)):
if i in ori_to_new_idx_map:
perms[:, i] = base_perms[:, ori_to_new_idx_map[i]]
else:
# The position of the H atom will not be exchanged.
perms[:, i] = i
return perms
def get_substructure_perms(
mol: Chem.Mol,
CheckStereochem: bool = True,
SymmetrizeConjugatedTerminal: bool = True,
MaxMatches: int = 512,
KeepProtonation: bool = False,
) -> np.ndarray:
kwargs = {
"CheckStereochem": CheckStereochem,
"SymmetrizeConjugatedTerminal": SymmetrizeConjugatedTerminal,
"MaxMatches": MaxMatches,
}
if KeepProtonation:
perms = _get_substructure_perms(mol, Neutralize=False, **kwargs)
else:
# Have to deuplicate permutations across the two protonation states
perms = np.unique(
np.row_stack(
(
_get_substructure_perms(mol, Neutralize=False, **kwargs),
_get_substructure_perms(mol, Neutralize=True, **kwargs),
)
),
axis=0,
)
nperm = len(perms)
if nperm > MaxMatches:
perms = perms[np.random.choice(range(nperm), MaxMatches, replace=False)]
return perms
def test():
testcases = [
"C1=CC=CC=C1",
"CC(=O)OC1=CC=CC=C1C(=O)O",
"C[C@H](CCC(=O)O)[C@H]1CC[C@@H]2[C@@]1(CC[C@H]3[C@H]2CC=C4[C@@]3(CC[C@@H](C4)O)C)C",
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
]
for smiles in testcases:
print(smiles)
molecule = Chem.MolFromSmiles(smiles)
perms = get_substructure_perms(molecule)
print(perms.shape)
print(perms.T)
if __name__ == "__main__":
test()
|