File size: 9,826 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
from collections import defaultdict

import numpy as np
from rdkit import Chem


def neutralize_atoms(mol: Chem.Mol):
    pattern = Chem.MolFromSmarts(
        "[+1!h0!$([*]~[-1,-2,-3,-4]),-1!#4!#5!$([*]~[+1,+2,+3,+4])]"
    )
    at_matches = mol.GetSubstructMatches(pattern)
    at_matches_list = [y[0] for y in at_matches]
    if len(at_matches_list) > 0:
        for at_idx in at_matches_list:
            atom = mol.GetAtomWithIdx(at_idx)
            chg = atom.GetFormalCharge()
            hcount = atom.GetTotalNumHs()
            atom.SetFormalCharge(0)
            atom.SetNumExplicitHs(hcount - chg)
            atom.UpdatePropertyCache()
    return mol


def recursive_permutation(atom_inds, permutation_list, res):
    def _permute_atom_ind(atom_inds, permutation):
        # atom_inds: list of atom (positional) indices
        # permutation: values to be permutated in the given order
        permute_inds = [i for i, a in enumerate(atom_inds) if a in permutation]
        for i, perm_ind in enumerate(permute_inds):
            atom_inds[perm_ind] = permutation[i]
        return atom_inds

    if len(permutation_list) == 0:
        res.append(atom_inds)
    else:
        current_permutation_list = permutation_list.copy()
        for permutation in current_permutation_list.pop(0):
            atom_inds_permed = _permute_atom_ind(atom_inds.copy(), permutation)
            recursive_permutation(atom_inds_permed, current_permutation_list, res)


def augment_atom_maps_with_conjugate_terminal_groups(
    original_maps, atomic_number_mapping, terminal_group_tuples, MaxMatches=1e6
):
    """
    Augment atom maps from GetSubstructMatches with extra symmetry from confjugated terminal groups.
    Parameters
    --------------
    original_maps:  Tuple(Tuples), all possible atom index mappings, note we require that the mappings should range from 0 to n_heavy_atom-1 (a.k.a. no gap in indexing)
    atomic_number_mapping: dict, mapping from atom (positional) indices to its atomic numbers, for splitting/removing different types of atoms in each terminal group
    terminal_group_tuples: Tuple(Tuples), a group of pair of atoms whose bonds match the SMARTS string. Ex: ((0, 1), (2, 1), (10, 9), (11, 9), (12, 9), (14, 13), (15, 13))
    MaxMatches: int, cutoff for total number of matches (n_original_perm * n_conjugate perm)

    Returns
    --------------
    augmented_maps: Tuple(Tuples) , original_maps augmented by muliplying the permutations induced by terminal_group_tuples.
    """

    def _terminal_atom_cluster_from_pairs(edges):
        graph = defaultdict(set)
        for u, v in edges:
            graph[u].add(v)
            graph[v].add(u)
        return graph

    def _split_sets_by_mapped_values(list_of_sets, mapping):
        result = []
        for s in list_of_sets:
            mapped_sets = {}
            for elem in s:
                mapped_value = mapping.get(elem)
                if mapped_value not in mapped_sets:
                    mapped_sets[mapped_value] = set()
                mapped_sets[mapped_value].add(elem)
            result.extend(mapped_sets.values())
        return result

    # group terminal group tuples with common atom_indices: [{0, 2}, {10, 11, 12}, {14, 15}]
    terminal_atom_clusters = _terminal_atom_cluster_from_pairs(terminal_group_tuples)
    MaxTerminalGroups = max(
        1, int(np.ceil(np.emath.logn(3, MaxMatches / len(original_maps))))
    )
    # if MaxTerminalGroups is less than the total number terminal groups, sample the first {MaxTerminalGroups} groups (to remove randomness)

    perm_groups = sorted(
        [
            atom_inds
            for common_id, atom_inds in terminal_atom_clusters.items()
            if len(atom_inds) > 1
        ]
    )[: min(MaxTerminalGroups, len(terminal_atom_clusters))]

    # within each terminal group, if there are different atom types, split by atom type (if only one left, discard)
    perm_groups = _split_sets_by_mapped_values(perm_groups, atomic_number_mapping)
    perm_groups = [p for p in perm_groups if len(p) > 1]

    # all permutations according to symmetric conjugate terminal atoms: [[(0, 2), (2, 0)], [(10, 11, 12), (10, 12, 11), (11, 10, 12), (11, 12, 10), (12, 10, 11), (12, 11, 10)], [(14, 15), (15, 14)]]
    perm_groups = [sorted(list(itertools.permutations(g))) for g in perm_groups]

    # recursively permute the original mappings
    augmented_maps = []
    for initial_mapping in original_maps:
        recursive_permutation(list(initial_mapping), perm_groups, augmented_maps)

    # Convert to the same data type as in original_maps
    augmented_maps = tuple(tuple(a) for a in augmented_maps)
    # Remove duplicates: original_maps might have already permutated some of the conjugate_terminal group indices
    return tuple(set(augmented_maps))


def _get_substructure_perms(
    mol: Chem.Mol,
    Neutralize: bool = False,
    CheckStereochem: bool = True,
    SymmetrizeConjugatedTerminal: bool = True,
    MaxMatches: int = 512,
) -> np.ndarray:
    """
    Args:
        CheckStereochem: whether to assure stereochem does not change after permutation
        Neutralize: if true, neutralize the mol before computing the permutations
        SymmetrizeConjugatedTerminal: if true, consider symmetrization of conjugated terminal groups
        MaxMatches: int, cutoff for total number of matches

    return shape=[num_perms, num_atoms]
    """
    ori_idx_w_h = []
    for atom in mol.GetAtoms():
        atom.SetProp("ori_idx_w_h", str(atom.GetIdx()))
        ori_idx_w_h.append(atom.GetIdx())

    # Attention !!!
    # Remove Hs; Otherwise, there will be too many matches.
    mol = Chem.RemoveHs(mol)
    if Neutralize:
        mol = neutralize_atoms(mol)

    # Get substructure matches
    base_perms = np.array(
        mol.GetSubstructMatches(mol, uniquify=False, maxMatches=MaxMatches)
    )
    assert len(base_perms) > 0, "no matches found, error"
    # Check stereochem
    if CheckStereochem:
        chem_order = np.array(
            list(Chem.rdmolfiles.CanonicalRankAtoms(mol, breakTies=False))
        )
        perms_mask = (chem_order[base_perms] == chem_order[None]).sum(
            -1
        ) == mol.GetNumAtoms()
        base_perms = base_perms[perms_mask]

    # Add terminal conjugate groups
    sma = "[O,N;D1;$([O,N;D1]-[*]=[O,N;D1]),$([O,N;D1]=[*]-[O,N;D1])]~[*]"
    patt = Chem.MolFromSmarts(sma)
    terminal_group_tuples = mol.GetSubstructMatches(patt)
    if (
        len(terminal_group_tuples) > 0 and SymmetrizeConjugatedTerminal
    ):  # Only augment if there exist conjugate pairs or if user sets to
        atomic_number_mapping = {
            i: atom.GetAtomicNum() for i, atom in enumerate(mol.GetAtoms())
        }
        base_perms = augment_atom_maps_with_conjugate_terminal_groups(
            tuple(tuple(a) for a in base_perms),
            atomic_number_mapping,
            terminal_group_tuples,
            MaxMatches,
        )
        base_perms = np.array(base_perms)

    if len(base_perms) > MaxMatches:
        base_perms = base_perms[:MaxMatches]

    new_to_ori_idx_map = {}
    ori_to_new_idx_map = {}
    for atom in mol.GetAtoms():
        ori_idx = int(atom.GetProp("ori_idx_w_h"))
        new_idx = atom.GetIdx()
        new_to_ori_idx_map[new_idx] = ori_idx
        ori_to_new_idx_map[ori_idx] = new_idx

    base_perms = np.vectorize(new_to_ori_idx_map.get)(base_perms)
    perms = np.zeros(shape=(base_perms.shape[0], len(ori_idx_w_h)))
    for i in range(len(ori_idx_w_h)):
        if i in ori_to_new_idx_map:
            perms[:, i] = base_perms[:, ori_to_new_idx_map[i]]
        else:
            # The position of the H atom will not be exchanged.
            perms[:, i] = i
    return perms


def get_substructure_perms(
    mol: Chem.Mol,
    CheckStereochem: bool = True,
    SymmetrizeConjugatedTerminal: bool = True,
    MaxMatches: int = 512,
    KeepProtonation: bool = False,
) -> np.ndarray:
    kwargs = {
        "CheckStereochem": CheckStereochem,
        "SymmetrizeConjugatedTerminal": SymmetrizeConjugatedTerminal,
        "MaxMatches": MaxMatches,
    }

    if KeepProtonation:
        perms = _get_substructure_perms(mol, Neutralize=False, **kwargs)
    else:
        # Have to deuplicate permutations across the two protonation states
        perms = np.unique(
            np.row_stack(
                (
                    _get_substructure_perms(mol, Neutralize=False, **kwargs),
                    _get_substructure_perms(mol, Neutralize=True, **kwargs),
                )
            ),
            axis=0,
        )

    nperm = len(perms)
    if nperm > MaxMatches:
        perms = perms[np.random.choice(range(nperm), MaxMatches, replace=False)]
    return perms


def test():
    testcases = [
        "C1=CC=CC=C1",
        "CC(=O)OC1=CC=CC=C1C(=O)O",
        "C[C@H](CCC(=O)O)[C@H]1CC[C@@H]2[C@@]1(CC[C@H]3[C@H]2CC=C4[C@@]3(CC[C@@H](C4)O)C)C",
        "CN1C=NC2=C1C(=O)N(C(=O)N2C)C",
    ]
    for smiles in testcases:
        print(smiles)
        molecule = Chem.MolFromSmiles(smiles)
        perms = get_substructure_perms(molecule)
        print(perms.shape)
        print(perms.T)


if __name__ == "__main__":
    test()