File size: 4,810 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright 2024 ByteDance and/or its affiliates.
#
# Copyright 2021- HPC-AI Technology Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http:#www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import numbers
import os
import sys
import time

import torch
from torch.nn.parameter import Parameter

sys.path.append(os.path.dirname(__file__))

try:
    fastfold_layer_norm_cuda = importlib.import_module("fastfold_layer_norm_cuda")
except ImportError:
    from protenix.model.layer_norm.torch_ext_compile import compile

    current_dir = os.path.dirname(__file__)
    fastfold_layer_norm_cuda = compile(
        name="fastfold_layer_norm_cuda",
        sources=[
            os.path.join(f"{current_dir}/kernel", file)
            for file in ["layer_norm_cuda.cpp", "layer_norm_cuda_kernel.cu"]
        ],
        extra_include_paths=[f"{current_dir}/kernel"],
        build_directory=current_dir,
    )


class FusedLayerNormAffineFunction(torch.autograd.Function):

    @staticmethod
    def forward(ctx, input, weight, bias, normalized_shape, eps):
        d = input.dtype
        if d is torch.bfloat16:
            with torch.cuda.amp.autocast(enabled=False):
                ctx.normalized_shape = normalized_shape
                ctx.eps = eps
                input_ = input.contiguous()
                weight_ = weight.contiguous().to(dtype=d)
                bias_ = bias.contiguous().to(dtype=d)
                output, mean, invvar = fastfold_layer_norm_cuda.forward_affine(
                    input_, ctx.normalized_shape, weight_, bias_, ctx.eps
                )
                ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
        else:
            ctx.normalized_shape = normalized_shape
            ctx.eps = eps
            input_ = input.contiguous()
            weight_ = weight.contiguous()
            bias_ = bias.contiguous()
            output, mean, invvar = fastfold_layer_norm_cuda.forward_affine(
                input_, ctx.normalized_shape, weight_, bias_, ctx.eps
            )
            ctx.save_for_backward(input_, weight_, bias_, mean, invvar)

        return output

    @staticmethod
    def backward(ctx, grad_output):
        d = grad_output.dtype
        if d is torch.bfloat16:
            with torch.cuda.amp.autocast(enabled=False):
                input_, weight_, bias_, mean, invvar = ctx.saved_tensors
                grad_input = grad_weight = grad_bias = None
                grad_input, grad_weight, grad_bias = (
                    fastfold_layer_norm_cuda.backward_affine(
                        grad_output.contiguous(),
                        mean,
                        invvar,
                        input_,
                        ctx.normalized_shape,
                        weight_.to(dtype=d),
                        bias_.to(dtype=d),
                        ctx.eps,
                    )
                )
        else:
            input_, weight_, bias_, mean, invvar = ctx.saved_tensors
            grad_input = grad_weight = grad_bias = None
            grad_input, grad_weight, grad_bias = (
                fastfold_layer_norm_cuda.backward_affine(
                    grad_output.contiguous(),
                    mean,
                    invvar,
                    input_,
                    ctx.normalized_shape,
                    weight_,
                    bias_,
                    ctx.eps,
                )
            )

        return grad_input, grad_weight, grad_bias, None, None


class FusedLayerNorm(torch.nn.Module):

    def __init__(self, normalized_shape, eps=1e-5):
        super(FusedLayerNorm, self).__init__()

        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = (normalized_shape,)
        self.normalized_shape = torch.Size(normalized_shape)
        self.eps = eps
        self.weight = Parameter(torch.ones(*normalized_shape))
        self.bias = Parameter(torch.ones(*normalized_shape))
        self.reset_parameters()

    def reset_parameters(self):
        torch.nn.init.ones_(self.weight)
        torch.nn.init.zeros_(self.bias)

    def forward(self, input):
        return self.kernel_forward(input)

    def kernel_forward(self, input):
        return FusedLayerNormAffineFunction.apply(
            input, self.weight, self.bias, self.normalized_shape, self.eps
        )