File size: 72,883 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from typing import Any, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from protenix.metrics.rmsd import weighted_rigid_align
from protenix.model.modules.frames import (
expressCoordinatesInFrame,
gather_frame_atom_by_indices,
)
from protenix.model.utils import expand_at_dim
from protenix.openfold_local.utils.checkpointing import get_checkpoint_fn
from protenix.utils.torch_utils import cdist
def loss_reduction(loss: torch.Tensor, method: str = "mean") -> torch.Tensor:
"""reduction wrapper
Args:
loss (torch.Tensor): loss
[...]
method (str, optional): reduction method. Defaults to "mean".
Returns:
torch.Tensor: reduced loss
[] or [...]
"""
if method is None:
return loss
assert method in ["mean", "sum", "add", "max", "min"]
if method == "add":
method = "sum"
return getattr(torch, method)(loss)
class SmoothLDDTLoss(nn.Module):
"""
Implements Algorithm 27 [SmoothLDDTLoss] in AF3
"""
def __init__(
self,
eps: float = 1e-10,
reduction: str = "mean",
) -> None:
"""SmoothLDDTLoss
Args:
eps (float, optional): avoid nan. Defaults to 1e-10.
reduction (str, optional): reduction method for the batch dims. Defaults to mean.
"""
super(SmoothLDDTLoss, self).__init__()
self.eps = eps
self.reduction = reduction
def _chunk_forward(self, pred_distance, true_distance, c_lm=None):
dist_diff = torch.abs(pred_distance - true_distance)
# For save cuda memory we use inplace op
dist_diff_epsilon = 0
for threshold in [0.5, 1, 2, 4]:
dist_diff_epsilon += 0.25 * torch.sigmoid(threshold - dist_diff)
# Compute mean
if c_lm is not None:
lddt = torch.sum(c_lm * dist_diff_epsilon, dim=(-1, -2)) / (
torch.sum(c_lm, dim=(-1, -2)) + self.eps
) # [..., N_sample]
else:
# It's for sparse forward mode
lddt = torch.mean(dist_diff_epsilon, dim=-1)
return lddt
def forward(
self,
pred_distance: torch.Tensor,
true_distance: torch.Tensor,
distance_mask: torch.Tensor,
lddt_mask: torch.Tensor,
diffusion_chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""SmoothLDDTLoss
Args:
pred_distance (torch.Tensor): the diffusion denoised atom-atom distance
[..., N_sample, N_atom, N_atom]
true_distance (torch.Tensor): the ground truth coordinates
[..., N_atom, N_atom]
distance_mask (torch.Tensor): whether true coordinates exist.
[N_atom, N_atom]
lddt_mask (torch.Tensor, optional): whether true distance is within radius (30A for nuc and 15A for others)
[N_atom, N_atom]
diffusion_chunk_size (Optional[int]): Chunk size over the N_sample dimension. Defaults to None.
Returns:
torch.Tensor: the smooth lddt loss
[...] if reduction is None else []
"""
c_lm = lddt_mask.bool().unsqueeze(dim=-3).detach() # [..., 1, N_atom, N_atom]
# Compute distance error
# [..., N_sample , N_atom, N_atom]
if diffusion_chunk_size is None:
lddt = self._chunk_forward(
pred_distance=pred_distance, true_distance=true_distance, c_lm=c_lm
)
else:
# Default use checkpoint for saving memory
checkpoint_fn = get_checkpoint_fn()
lddt = []
N_sample = pred_distance.shape[-3]
no_chunks = N_sample // diffusion_chunk_size + (
N_sample % diffusion_chunk_size != 0
)
for i in range(no_chunks):
lddt_i = checkpoint_fn(
self._chunk_forward,
pred_distance[
...,
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size,
:,
:,
],
true_distance,
c_lm,
)
lddt.append(lddt_i)
lddt = torch.cat(lddt, dim=-1)
lddt = lddt.mean(dim=-1) # [...]
return 1 - loss_reduction(lddt, method=self.reduction)
def sparse_forward(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
lddt_mask: torch.Tensor,
diffusion_chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""SmoothLDDTLoss sparse implementation
Args:
pred_coordinate (torch.Tensor): the diffusion denoised atom coordinates
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): the ground truth atom coordinates
[..., N_atom, 3]
lddt_mask (torch.Tensor, optional): whether true distance is within radius (30A for nuc and 15A for others)
[N_atom, N_atom]
diffusion_chunk_size (Optional[int]): Chunk size over the N_sample dimension. Defaults to None.
Returns:
torch.Tensor: the smooth lddt loss
[...] if reduction is None else []
"""
lddt_indices = torch.nonzero(lddt_mask, as_tuple=True)
true_coords_l = true_coordinate.index_select(-2, lddt_indices[0])
true_coords_m = true_coordinate.index_select(-2, lddt_indices[1])
true_distance_sparse_lm = torch.norm(true_coords_l - true_coords_m, p=2, dim=-1)
if diffusion_chunk_size is None:
pred_coords_l = pred_coordinate.index_select(-2, lddt_indices[0])
pred_coords_m = pred_coordinate.index_select(-2, lddt_indices[1])
# \delta x_{lm} and \delta x_{lm}^{GT} in the Algorithm 27
pred_distance_sparse_lm = torch.norm(
pred_coords_l - pred_coords_m, p=2, dim=-1
)
lddt = self._chunk_forward(
pred_distance_sparse_lm, true_distance_sparse_lm, c_lm=None
)
else:
checkpoint_fn = get_checkpoint_fn()
lddt = []
N_sample = pred_coordinate.shape[-3]
no_chunks = N_sample // diffusion_chunk_size + (
N_sample % diffusion_chunk_size != 0
)
for i in range(no_chunks):
pred_coords_i_l = pred_coordinate[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size, :, :
].index_select(-2, lddt_indices[0])
pred_coords_i_m = pred_coordinate[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size, :, :
].index_select(-2, lddt_indices[1])
# \delta x_{lm} and \delta x_{lm}^{GT} in the Algorithm 27
pred_distance_sparse_i_lm = torch.norm(
pred_coords_i_l - pred_coords_i_m, p=2, dim=-1
)
lddt_i = checkpoint_fn(
self._chunk_forward,
pred_distance_sparse_i_lm,
true_distance_sparse_lm,
)
lddt.append(lddt_i)
lddt = torch.cat(lddt, dim=-1)
lddt = lddt.mean(dim=-1) # [...]
return 1 - loss_reduction(lddt, method=self.reduction)
def dense_forward(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
lddt_mask: torch.Tensor,
diffusion_chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""SmoothLDDTLoss sparse implementation
Args:
pred_coordinate (torch.Tensor): the diffusion denoised atom coordinates
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): the ground truth atom coordinates
[..., N_atom, 3]
lddt_mask (torch.Tensor, optional): whether true distance is within radius (30A for nuc and 15A for others)
[N_atom, N_atom]
diffusion_chunk_size (Optional[int]): Chunk size over the N_sample dimension. Defaults to None.
Returns:
torch.Tensor: the smooth lddt loss
[...] if reduction is None else []
"""
c_lm = lddt_mask.bool().unsqueeze(dim=-3).detach() # [..., 1, N_atom, N_atom]
# Compute distance error
# [..., N_sample , N_atom, N_atom]
true_distance = torch.cdist(true_coordinate, true_coordinate)
if diffusion_chunk_size is None:
pred_distance = torch.cdist(pred_coordinate, pred_coordinate)
lddt = self._chunk_forward(
pred_distance=pred_distance, true_distance=true_distance, c_lm=c_lm
)
else:
checkpoint_fn = get_checkpoint_fn()
lddt = []
N_sample = pred_coordinate.shape[-3]
no_chunks = N_sample // diffusion_chunk_size + (
N_sample % diffusion_chunk_size != 0
)
for i in range(no_chunks):
pred_distance_i = torch.cdist(
pred_coordinate[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size,
:,
:,
],
pred_coordinate[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size,
:,
:,
],
)
lddt_i = checkpoint_fn(
self._chunk_forward,
pred_distance_i,
true_distance,
c_lm,
)
lddt.append(lddt_i)
lddt = torch.cat(lddt, dim=-1)
lddt = lddt.mean(dim=-1) # [...]
return 1 - loss_reduction(lddt, method=self.reduction)
class BondLoss(nn.Module):
"""
Implements Formula 5 [BondLoss] in AF3
"""
def __init__(self, eps: float = 1e-6, reduction: str = "mean") -> None:
"""BondLoss
Args:
eps (float, optional): avoid nan. Defaults to 1e-6.
reduction (str, optional): reduction method for the batch dims. Defaults to mean.
"""
super(BondLoss, self).__init__()
self.eps = eps
self.reduction = reduction
def _chunk_forward(self, pred_distance, true_distance, bond_mask):
# Distance squared error
# [..., N_sample , N_atom, N_atom]
dist_squared_err = (pred_distance - true_distance.unsqueeze(dim=-3)) ** 2
bond_loss = torch.sum(dist_squared_err * bond_mask, dim=(-1, -2)) / torch.sum(
bond_mask + self.eps, dim=(-1, -2)
) # [..., N_sample]
return bond_loss
def forward(
self,
pred_distance: torch.Tensor,
true_distance: torch.Tensor,
distance_mask: torch.Tensor,
bond_mask: torch.Tensor,
per_sample_scale: torch.Tensor = None,
diffusion_chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""BondLoss
Args:
pred_distance (torch.Tensor): the diffusion denoised atom-atom distance
[..., N_sample, N_atom, N_atom]
true_distance (torch.Tensor): the ground truth coordinates
[..., N_atom, N_atom]
distance_mask (torch.Tensor): whether true coordinates exist.
[N_atom, N_atom] or [..., N_atom, N_atom]
bond_mask (torch.Tensor): bonds considered in this loss
[N_atom, N_atom] or [..., N_atom, N_atom]
per_sample_scale (torch.Tensor, optional): whether to scale the loss by the per-sample noise-level.
[..., N_sample]
diffusion_chunk_size (Optional[int]): Chunk size over the N_sample dimension. Defaults to None.
Returns:
torch.Tensor: the bond loss
[...] if reduction is None else []
"""
bond_mask = (bond_mask * distance_mask).unsqueeze(
dim=-3
) # [1, N_atom, N_atom] or [..., 1, N_atom, N_atom]
# Bond Loss
if diffusion_chunk_size is None:
bond_loss = self._chunk_forward(
pred_distance=pred_distance,
true_distance=true_distance,
bond_mask=bond_mask,
)
else:
checkpoint_fn = get_checkpoint_fn()
bond_loss = []
N_sample = pred_distance.shape[-3]
no_chunks = N_sample // diffusion_chunk_size + (
N_sample % diffusion_chunk_size != 0
)
for i in range(no_chunks):
bond_loss_i = checkpoint_fn(
self._chunk_forward,
pred_distance[
...,
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size,
:,
:,
],
true_distance,
bond_mask,
)
bond_loss.append(bond_loss_i)
bond_loss = torch.cat(bond_loss, dim=-1)
if per_sample_scale is not None:
bond_loss = bond_loss * per_sample_scale
bond_loss = bond_loss.mean(dim=-1) # [...]
return loss_reduction(bond_loss, method=self.reduction)
def sparse_forward(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
distance_mask: torch.Tensor,
bond_mask: torch.Tensor,
per_sample_scale: torch.Tensor = None,
) -> torch.Tensor:
"""BondLoss sparse implementation
Args:
pred_coordinate (torch.Tensor): the diffusion denoised atom coordinates
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): the ground truth atom coordinates
[..., N_atom, 3]
distance_mask (torch.Tensor): whether true coordinates exist.
[N_atom, N_atom] or [..., N_atom, N_atom]
bond_mask (torch.Tensor): bonds considered in this loss
[N_atom, N_atom] or [..., N_atom, N_atom]
per_sample_scale (torch.Tensor, optional): whether to scale the loss by the per-sample noise-level.
[..., N_sample]
Returns:
torch.Tensor: the bond loss
[...] if reduction is None else []
"""
bond_mask = bond_mask * distance_mask
bond_indices = torch.nonzero(bond_mask, as_tuple=True)
pred_coords_i = pred_coordinate.index_select(-2, bond_indices[0])
pred_coords_j = pred_coordinate.index_select(-2, bond_indices[1])
true_coords_i = true_coordinate.index_select(-2, bond_indices[0])
true_coords_j = true_coordinate.index_select(-2, bond_indices[1])
pred_distance_sparse = torch.norm(pred_coords_i - pred_coords_j, p=2, dim=-1)
true_distance_sparse = torch.norm(true_coords_i - true_coords_j, p=2, dim=-1)
dist_squared_err_sparse = (pred_distance_sparse - true_distance_sparse) ** 2
# Protecting special data that has size: tensor([], size=(x, 0), grad_fn=<PowBackward0>)
if dist_squared_err_sparse.numel() == 0:
return torch.tensor(
0.0, device=dist_squared_err_sparse.device, requires_grad=True
)
bond_loss = torch.mean(dist_squared_err_sparse, dim=-1) # [..., N_sample]
if per_sample_scale is not None:
bond_loss = bond_loss * per_sample_scale
bond_loss = bond_loss.mean(dim=-1) # [...]
return bond_loss
def compute_lddt_mask(
true_distance: torch.Tensor,
distance_mask: torch.Tensor,
is_nucleotide: torch.Tensor,
is_nucleotide_threshold: float = 30.0,
is_not_nucleotide_threshold: float = 15.0,
) -> torch.Tensor:
"""calculate the atom pair mask with the bespoke radius
Args:
true_distance (torch.Tensor): the ground truth coordinates
[..., N_atom, N_atom]
distance_mask (torch.Tensor): whether true coordinates exist.
[..., N_atom, N_atom] or [N_atom, N_atom]
is_nucleotide (torch.Tensor): Indicator for nucleotide atoms.
[..., N_atom] or [N_atom]
is_nucleotide_threshold (float): Threshold distance for nucleotide atoms. Defaults to 30.0.
is_not_nucleotide_threshold (float): Threshold distance for non-nucleotide atoms. Defaults to 15.0.
Returns:
c_lm (torch.Tenson): the atom pair mask c_lm, not symmetric
[..., N_atom, N_atom]
"""
# Restrict to bespoke inclusion radius
is_nucleotide_mask = is_nucleotide.bool()
c_lm = (true_distance < is_nucleotide_threshold) * is_nucleotide_mask[..., None] + (
true_distance < is_not_nucleotide_threshold
) * (
~is_nucleotide_mask[..., None]
) # [..., N_atom, N_atom]
# Zero-out diagonals of c_lm and cast to float
c_lm = c_lm * (
1 - torch.eye(n=c_lm.size(-1), device=c_lm.device, dtype=true_distance.dtype)
)
# Zero-out atom pairs without true coordinates
# Note: the sparsity of c_lm is ~10% in 5000 atom-pairs,
# and becomes more sparse as the number of atoms increases,
# change to sparse implementation can reduce cuda memory
c_lm = c_lm * distance_mask # [..., N_atom, N_atom]
return c_lm
def softmax_cross_entropy(logits: torch.Tensor, labels: torch.Tensor) -> torch.Tensor:
"""Softmax cross entropy
Args:
logits (torch.Tensor): classification logits
[..., num_class]
labels (torch.Tensor): classification labels (value = probability)
[..., num_class]
Returns:
torch.Tensor: softmax cross entropy
[...]
"""
loss = -1 * torch.sum(
labels * F.log_softmax(logits, dim=-1),
dim=-1,
)
return loss
class DistogramLoss(nn.Module):
"""
Implements DistogramLoss in AF3
"""
def __init__(
self,
min_bin: float = 2.3125,
max_bin: float = 21.6875,
no_bins: int = 64,
eps: float = 1e-6,
reduction: str = "mean",
) -> None:
"""Distogram loss
This head and loss are identical to AlphaFold 2, where the pairwise token distances use the representative atom for each token:
Cβ for protein residues (Cα for glycine),
C4 for purines and C2 for pyrimidines.
All ligands already have a single atom per token.
Args:
min_bin (float, optional): min boundary of bins. Defaults to 2.3125.
max_bin (float, optional): max boundary of bins. Defaults to 21.6875.
no_bins (int, optional): number of bins. Defaults to 64.
eps (float, optional): small number added to denominator. Defaults to 1e-6.
reduce (bool, optional): reduce dim. Defaults to True.
"""
super(DistogramLoss, self).__init__()
self.min_bin = min_bin
self.max_bin = max_bin
self.no_bins = no_bins
self.eps = eps
self.reduction = reduction
def calculate_label(
self,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
rep_atom_mask: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""calculate the label as bins
Args:
true_coordinate (torch.Tensor): true coordinates.
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist.
[N_atom] or [..., N_atom]
rep_atom_mask (torch.Tensor): representative atom mask
[N_atom]
Returns:
true_bins (torch.Tensor): distance error assigned into bins (one-hot).
[..., N_token, N_token, no_bins]
pair_coordinate_mask (torch.Tensor): whether the coordinates of representative atom pairs exist.
[N_token, N_token] or [..., N_token, N_token]
"""
boundaries = torch.linspace(
start=self.min_bin,
end=self.max_bin,
steps=self.no_bins - 1,
device=true_coordinate.device,
)
# Compute label: the true bins
# True distance
rep_atom_mask = rep_atom_mask.bool()
true_coordinate = true_coordinate[..., rep_atom_mask, :] # [..., N_token, 3]
gt_dist = cdist(true_coordinate, true_coordinate) # [..., N_token, N_token]
# Assign distance to bins
true_bins = torch.sum(
gt_dist.unsqueeze(dim=-1) > boundaries, dim=-1
) # range in [0, no_bins-1], shape = [..., N_token, N_token]
# Mask
token_mask = coordinate_mask[..., rep_atom_mask]
pair_mask = token_mask[..., None] * token_mask[..., None, :]
return F.one_hot(true_bins, self.no_bins), pair_mask
def forward(
self,
logits: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
rep_atom_mask: torch.Tensor,
) -> torch.Tensor:
"""Distogram loss
Args:
logits (torch.Tensor): logits.
[..., N_token, N_token, no_bins]
true_coordinate (torch.Tensor): true coordinates.
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist.
[N_atom] or [..., N_atom]
rep_atom_mask (torch.Tensor): representative atom mask.
[N_atom]
Returns:
torch.Tensor: the return loss.
[...] if self.reduction is not None else []
"""
with torch.no_grad():
true_bins, pair_mask = self.calculate_label(
true_coordinate=true_coordinate,
coordinate_mask=coordinate_mask,
rep_atom_mask=rep_atom_mask,
)
errors = softmax_cross_entropy(
logits=logits,
labels=true_bins,
) # [..., N_token, N_token]
denom = self.eps + torch.sum(pair_mask, dim=(-1, -2))
loss = torch.sum(errors * pair_mask, dim=(-1, -2))
loss = loss / denom
return loss_reduction(loss, method=self.reduction)
class PDELoss(nn.Module):
"""
Implements Predicted distance loss in AF3
"""
def __init__(
self,
min_bin: float = 0,
max_bin: float = 32,
no_bins: int = 64,
eps: float = 1e-6,
reduction: str = "mean",
) -> None:
"""PDELoss
This loss are between representative token atoms i and j in the mini-rollout prediction
Args:
min_bin (float, optional): min boundary of bins. Defaults to 0.
max_bin (float, optional): max boundary of bins. Defaults to 32.
no_bins (int, optional): number of bins. Defaults to 64.
eps (float, optional): small number added to denominator. Defaults to 1e-6.
reduction (str, optional): reduction method for the batch dims. Defaults to mean.
"""
super(PDELoss, self).__init__()
self.min_bin = min_bin
self.max_bin = max_bin
self.no_bins = no_bins
self.eps = eps
self.reduction = reduction
def calculate_label(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
rep_atom_mask: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""calculate the label as bins
Args:
pred_coordinate (torch.Tensor): predicted coordinates.
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): true coordinates.
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist.
[N_atom] or [..., N_atom]
rep_atom_mask (torch.Tensor):
[N_atom]
Returns:
true_bins (torch.Tensor): distance error assigned into bins (one-hot).
[..., N_sample, N_token, N_token, no_bins]
pair_coordinate_mask (torch.Tensor): whether the coordinates of representative atom pairs exist.
[N_token, N_token] or [..., N_token, N_token]
"""
boundaries = torch.linspace(
start=self.min_bin,
end=self.max_bin,
steps=self.no_bins + 1,
device=pred_coordinate.device,
)
# Compute label: the true bins
# True distance
rep_atom_mask = rep_atom_mask.bool()
true_coordinate = true_coordinate[..., rep_atom_mask, :] # [..., N_token, 3]
gt_dist = cdist(true_coordinate, true_coordinate) # [..., N_token, N_token]
# Predicted distance
pred_coordinate = pred_coordinate[..., rep_atom_mask, :]
pred_dist = cdist(
pred_coordinate, pred_coordinate
) # [..., N_sample, N_token, N_token]
# Distance error
dist_error = torch.abs(pred_dist - gt_dist.unsqueeze(dim=-3))
# Assign distance error to bins
true_bins = torch.sum(
dist_error.unsqueeze(dim=-1) > boundaries, dim=-1
) # range in [1, no_bins + 1], shape = [..., N_sample, N_token, N_token]
true_bins = torch.clamp(
true_bins, min=1, max=self.no_bins
) # just in case bin=0 occurs
# Mask
token_mask = coordinate_mask[..., rep_atom_mask]
pair_mask = token_mask[..., None] * token_mask[..., None, :]
return F.one_hot(true_bins - 1, self.no_bins).detach(), pair_mask.detach()
def forward(
self,
logits: torch.Tensor,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
rep_atom_mask: torch.Tensor,
) -> torch.Tensor:
"""PDELoss
Args:
logits (torch.Tensor): logits
[..., N_sample, N_token, N_token, no_bins]
pred_coordinate: (torch.Tensor): predict coordinates
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): true coordinates
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist
[N_atom] or [..., N_atom]
rep_atom_mask (torch.Tensor): representative atom mask for this loss
[N_atom]
Returns:
torch.Tensor: the return loss
[...] if reduction is None else []
"""
with torch.no_grad():
true_bins, pair_mask = self.calculate_label(
pred_coordinate=pred_coordinate,
true_coordinate=true_coordinate,
coordinate_mask=coordinate_mask,
rep_atom_mask=rep_atom_mask,
)
errors = softmax_cross_entropy(
logits=logits,
labels=true_bins,
) # [..., N_sample, N_token, N_token]
denom = self.eps + torch.sum(pair_mask, dim=(-1, -2)) # [...]
loss = errors * pair_mask.unsqueeze(dim=-3) # [..., N_sample, N_token, N_token]
loss = torch.sum(loss, dim=(-1, -2)) # [..., N_sample]
loss = loss / denom.unsqueeze(dim=-1) # [..., N_sample]
loss = loss.mean(dim=-1) # [...]
return loss_reduction(loss, method=self.reduction)
# Algorithm 30 Compute alignment error
def compute_alignment_error_squared(
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
pred_frames: torch.Tensor,
true_frames: torch.Tensor,
) -> torch.Tensor:
"""Implements Algorithm 30 Compute alignment error, but do not take the square root
Args:
pred_coordinate (torch.Tensor): the predict coords [frame center]
[..., N_sample, N_token, 3]
true_coordinate (torch.Tensor): the ground truth coords [frame center]
[..., N_token, 3]
pred_frames (torch.Tensor): the predict frame
[..., N_sample, N_frame, 3, 3]
true_frames (torch.Tensor): the ground truth frame
[..., N_frame, 3, 3]
Returns:
torch.Tensor: the computed alignment error
[..., N_sample, N_frame, N_token]
"""
x_transformed_pred = expressCoordinatesInFrame(
coordinate=pred_coordinate, frames=pred_frames
) # [..., N_sample, N_frame, N_token, 3]
x_transformed_true = expressCoordinatesInFrame(
coordinate=true_coordinate, frames=true_frames
) # [..., N_frame, N_token, 3]
squared_pae = torch.sum(
(x_transformed_pred - x_transformed_true.unsqueeze(dim=-4)) ** 2, dim=-1
) # [..., N_sample, N_frame, N_token]
return squared_pae
class PAELoss(nn.Module):
"""
Implements Predicted Aligned distance loss in AF3
"""
def __init__(
self,
min_bin: float = 0,
max_bin: float = 32,
no_bins: int = 64,
eps: float = 1e-6,
reduction: str = "mean",
) -> None:
"""PAELoss
This loss are between representative token atoms i and j in the mini-rollout prediction
Args:
min_bin (float, optional): min boundary of bins. Defaults to 0.
max_bin (float, optional): max boundary of bins. Defaults to 32.
no_bins (int, optional): number of bins. Defaults to 64.
eps (float, optional): small number added to denominator. Defaults to 1e-6.
reduce (bool, optional): reduce dim. Defaults to True.
"""
super(PAELoss, self).__init__()
self.min_bin = min_bin
self.max_bin = max_bin
self.no_bins = no_bins
self.eps = eps
self.reduction = reduction
def calculate_label(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
rep_atom_mask: torch.Tensor,
frame_atom_index: torch.Tensor,
has_frame: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""calculate true PAE (squared) and true bins
Args:
pred_coordinate: (torch.Tensor): predict coordinates.
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): true coordinates.
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist
[N_atom]
rep_atom_mask (torch.Tensor): masks of the representative atom for each token.
[N_atom]
frame_atom_index (torch.Tensor): indices of frame atoms (three atoms per token(=per frame)).
[N_token, 3[three atom]]
has_frame (torch.Tensor): indicates whether token_i has a valid frame.
[N_token]
Returns:
squared_pae (torch.Tensor): pairwise alignment error squared
[..., N_sample, N_frame, N_token] where N_token = rep_atom_mask.sum()
true_bins (torch.Tensor): the true bins
[..., N_sample, N_frame, N_token, no_bins]
frame_token_pair_mask (torch.Tensor): whether frame_i token_j both have true coordinates.
[N_frame, N_token]
"""
coordinate_mask = coordinate_mask.bool()
rep_atom_mask = rep_atom_mask.bool()
has_frame = has_frame.bool()
# NOTE: to support frame_atom_index with batch_dims, need to expand its dims before constructing frames.
assert len(frame_atom_index.shape) == 2
# Take valid frames: N_token -> N_frame
frame_atom_index = frame_atom_index[has_frame, :] # [N_frame, 3[three atom]]
# Get predicted frames and true frames
pred_frames = gather_frame_atom_by_indices(
coordinate=pred_coordinate, frame_atom_index=frame_atom_index, dim=-2
) # [..., N_sample, N_frame, 3[three atom], 3[coordinates]]
true_frames = gather_frame_atom_by_indices(
coordinate=true_coordinate, frame_atom_index=frame_atom_index, dim=-2
) # [..., N_frame, 3[three atom], 3[coordinates]]
# Get pair_mask for computing the loss
true_frame_coord_mask = gather_frame_atom_by_indices(
coordinate=coordinate_mask, frame_atom_index=frame_atom_index, dim=-1
) # [N_frame, 3[three atom]]
true_frame_coord_mask = (
true_frame_coord_mask.sum(dim=-1) >= 3
) # [N_frame] whether all atoms in the frame has coordinates
token_mask = coordinate_mask[rep_atom_mask] # [N_token]
frame_token_pair_mask = (
true_frame_coord_mask[..., None] * token_mask[..., None, :]
) # [N_frame, N_token]
squared_pae = (
compute_alignment_error_squared(
pred_coordinate=pred_coordinate[..., rep_atom_mask, :],
true_coordinate=true_coordinate[..., rep_atom_mask, :],
pred_frames=pred_frames,
true_frames=true_frames,
)
* frame_token_pair_mask
) # [..., N_sample, N_frame, N_token]
# Compute true bins
boundaries = torch.linspace(
start=self.min_bin,
end=self.max_bin,
steps=self.no_bins + 1,
device=pred_coordinate.device,
)
boundaries = boundaries**2
true_bins = torch.sum(
squared_pae.unsqueeze(dim=-1) > boundaries, dim=-1
) # range [1, no_bins + 1]
true_bins = torch.where(
frame_token_pair_mask,
true_bins,
torch.ones_like(true_bins) * self.no_bins,
)
true_bins = torch.clamp(
true_bins, min=1, max=self.no_bins
) # just in case bin=0 occurs
return (
squared_pae.detach(),
F.one_hot(true_bins - 1, self.no_bins).detach(),
frame_token_pair_mask.detach(),
)
def forward(
self,
logits: torch.Tensor,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
frame_atom_index: torch.Tensor,
rep_atom_mask: torch.Tensor,
has_frame: torch.Tensor,
) -> torch.Tensor:
"""PAELoss
Args:
logits (torch.Tensor): logits
[..., N_sample, N_token, N_token, no_bins]
pred_coordinate: (torch.Tensor): predict coordinates
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): true coordinates
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist
[N_atom]
rep_atom_mask (torch.Tensor): masks of the representative atom for each token.
[N_atom]
frame_atom_index (torch.Tensor): indices of frame atoms (three atoms per token(=per frame)).
[N_token, 3[three atom]]
has_frame (torch.Tensor): indicates whether token_i has a valid frame.
[N_token]
Returns:
torch.Tensor: the return loss
[] if reduce
[..., n] else
"""
has_frame = has_frame.bool()
rep_atom_mask = rep_atom_mask.bool()
assert len(has_frame.shape) == 1
assert len(frame_atom_index.shape) == 2
with torch.no_grad():
# true_bins: [..., N_sample, N_frame, N_token, no_bins]
# pair_mask: [N_frame, N_token]
_, true_bins, pair_mask = self.calculate_label(
pred_coordinate=pred_coordinate,
true_coordinate=true_coordinate,
frame_atom_index=frame_atom_index,
rep_atom_mask=rep_atom_mask,
coordinate_mask=coordinate_mask,
has_frame=has_frame,
)
loss = softmax_cross_entropy(
logits=logits[
..., has_frame, :, :
], # [..., N_sample, N_frame, N_token, no_bins]
labels=true_bins,
) # [..., N_sample, N_frame, N_token]
denom = self.eps + torch.sum(pair_mask, dim=(-1, -2)) # []
loss = loss * pair_mask.unsqueeze(dim=-3) # [..., N_sample, N_token, N_token]
loss = torch.sum(loss, dim=(-1, -2)) # [..., N_sample]
loss = loss / denom.unsqueeze(dim=-1) # [..., N_sample]
loss = loss.mean(dim=-1) # [...]
return loss_reduction(loss, self.reduction)
class ExperimentallyResolvedLoss(nn.Module):
def __init__(
self,
eps: float = 1e-6,
reduction: str = "mean",
) -> None:
"""
Args:
eps (float, optional): avoid nan. Defaults to 1e-6.
"""
super(ExperimentallyResolvedLoss, self).__init__()
self.eps = eps
self.reduction = reduction
def forward(
self,
logits: torch.Tensor,
coordinate_mask: torch.Tensor,
atom_mask: torch.Tensor = None,
) -> torch.Tensor:
"""
Args:
logits (torch.Tensor): logits
[..., N_sample, N_atom, no_bins:=2]
coordinate_mask (torch.Tensor): whether true coordinates exist
[..., N_atom] | [N_atom]
atom_mask (torch.Tensor, optional): whether to conside the atom in the loss
[..., N_atom]
Returns:
torch.Tensor: the experimentally resolved loss
"""
is_resolved = F.one_hot(
coordinate_mask.long(), 2
) # [..., N_atom, 2] or [N_atom, 2]
errors = softmax_cross_entropy(
logits=logits, labels=is_resolved.unsqueeze(dim=-3)
) # [..., N_sample, N_atom]
if atom_mask is None:
loss = errors.mean(dim=-1) # [..., N_sample]
else:
loss = torch.sum(
errors * atom_mask[..., None, :], dim=-1
) # [..., N_sample]
loss = loss / (
self.eps + torch.sum(atom_mask[..., None, :], dim=-1)
) # [..., N_sample]
loss = loss.mean(dim=-1) # [...]
return loss_reduction(loss, method=self.reduction)
class MSELoss(nn.Module):
"""
Implements Formula 2-4 [MSELoss] in AF3
"""
def __init__(
self,
weight_mse: float = 1 / 3,
weight_dna: float = 5.0,
weight_rna=5.0,
weight_ligand=10.0,
eps=1e-6,
reduction: str = "mean",
) -> None:
super(MSELoss, self).__init__()
self.weight_mse = weight_mse
self.weight_dna = weight_dna
self.weight_rna = weight_rna
self.weight_ligand = weight_ligand
self.eps = eps
self.reduction = reduction
def weighted_rigid_align(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
is_dna: torch.Tensor,
is_rna: torch.Tensor,
is_ligand: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""compute weighted rigid alignment results
Args:
pred_coordinate (torch.Tensor): the denoised coordinates from diffusion module
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): the ground truth coordinates
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist
[N_atom] or [..., N_atom]
is_dna / is_rna / is_ligand (torch.Tensor): mol type mask
[N_atom] or [..., N_atom]
Returns:
true_coordinate_aligned (torch.Tensor): aligned coordinates for each sample
[..., N_sample, N_atom, 3]
weight (torch.Tensor): weights for each atom
[N_atom] or [..., N_sample, N_atom]
"""
N_sample = pred_coordinate.size(-3)
weight = (
1
+ self.weight_dna * is_dna
+ self.weight_rna * is_rna
+ self.weight_ligand * is_ligand
) # [N_atom] or [..., N_atom]
# Apply coordinate_mask
weight = weight * coordinate_mask # [N_atom] or [..., N_atom]
true_coordinate = true_coordinate * coordinate_mask.unsqueeze(dim=-1)
pred_coordinate = pred_coordinate * coordinate_mask[..., None, :, None]
# Reshape to add "N_sample" dimension
true_coordinate = expand_at_dim(
true_coordinate, dim=-3, n=N_sample
) # [..., N_sample, N_atom, 3]
if len(weight.shape) > 1:
weight = expand_at_dim(
weight, dim=-2, n=N_sample
) # [..., N_sample, N_atom]
# Align GT coords to predicted coords
d = pred_coordinate.dtype
# Some ops in weighted_rigid_align do not support BFloat16 training
with torch.cuda.amp.autocast(enabled=False):
true_coordinate_aligned = weighted_rigid_align(
x=true_coordinate.to(torch.float32), # [..., N_sample, N_atom, 3]
x_target=pred_coordinate.to(
torch.float32
), # [..., N_sample, N_atom, 3]
atom_weight=weight.to(
torch.float32
), # [N_atom] or [..., N_sample, N_atom]
stop_gradient=True,
) # [..., N_sample, N_atom, 3]
true_coordinate_aligned = true_coordinate_aligned.to(d)
return (true_coordinate_aligned.detach(), weight.detach())
def forward(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
is_dna: torch.Tensor,
is_rna: torch.Tensor,
is_ligand: torch.Tensor,
per_sample_scale: torch.Tensor = None,
) -> torch.Tensor:
"""MSELoss
Args:
pred_coordinate (torch.Tensor): the denoised coordinates from diffusion module.
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): the ground truth coordinates.
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist.
[N_atom] or [..., N_atom]
is_dna / is_rna / is_ligand (torch.Tensor): mol type mask.
[N_atom] or [..., N_atom]
per_sample_scale (torch.Tensor, optional): whether to scale the loss by the per-sample noise-level.
[..., N_sample]
Returns:
torch.Tensor: the weighted mse loss.
[...] is self.reduction is None else []
"""
# True_coordinate_aligned: [..., N_sample, N_atom, 3]
# Weight: [N_atom] or [..., N_sample, N_atom]
with torch.no_grad():
true_coordinate_aligned, weight = self.weighted_rigid_align(
pred_coordinate=pred_coordinate,
true_coordinate=true_coordinate,
coordinate_mask=coordinate_mask,
is_dna=is_dna,
is_rna=is_rna,
is_ligand=is_ligand,
)
# Calculate MSE loss
per_atom_se = ((pred_coordinate - true_coordinate_aligned) ** 2).sum(
dim=-1
) # [..., N_sample, N_atom]
per_sample_weighted_mse = (weight * per_atom_se).sum(dim=-1) / (
coordinate_mask.sum(dim=-1, keepdim=True) + self.eps
) # [..., N_sample]
if per_sample_scale is not None:
per_sample_weighted_mse = per_sample_weighted_mse * per_sample_scale
weighted_align_mse_loss = self.weight_mse * (per_sample_weighted_mse).mean(
dim=-1
) # [...]
loss = loss_reduction(weighted_align_mse_loss, method=self.reduction)
return loss
class PLDDTLoss(nn.Module):
"""
Implements PLDDT Loss in AF3, different from the paper description.
Main changes:
1. use difference of distance instead of predicted distance when calculating plddt
2. normalize each plddt score within 0-1
"""
def __init__(
self,
min_bin: float = 0,
max_bin: float = 1,
no_bins: int = 50,
is_nucleotide_threshold: float = 30.0,
is_not_nucleotide_threshold: float = 15.0,
eps: float = 1e-6,
normalize: bool = True,
reduction: str = "mean",
) -> None:
"""PLDDT loss
This loss are between atoms l and m (has some filters) in the mini-rollout prediction
Args:
min_bin (float, optional): min boundary of bins. Defaults to 0.
max_bin (float, optional): max boundary of bins. Defaults to 1.
no_bins (int, optional): number of bins. Defaults to 50.
is_nucleotide_threshold (float, optional): threshold for nucleotide atoms. Defaults 30.0.
is_not_nucleotide_threshold (float, optional): threshold for non-nucleotide atoms. Defaults 15.0
eps (float, optional): small number added to denominator. Defaults to 1e-6.
reduction (str, optional): reduction method for the batch dims. Defaults to mean.
"""
super(PLDDTLoss, self).__init__()
self.normalize = normalize
self.min_bin = min_bin
self.max_bin = max_bin
self.no_bins = no_bins
self.eps = eps
self.reduction = reduction
self.is_nucleotide_threshold = is_nucleotide_threshold
self.is_not_nucleotide_threshold = is_not_nucleotide_threshold
def calculate_label(
self,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
is_nucleotide: torch.Tensor,
is_polymer: torch.Tensor,
rep_atom_mask: torch.Tensor,
) -> torch.Tensor:
"""calculate the lddt as described in Sec 4.3.1.
Args:
pred_coordinate (torch.Tensor):
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor):
[..., N_atom]
is_nucleotide (torch.Tensor):
[N_atom] or [..., N_atom]
is_polymer (torch.Tensor):
[N_atom]
rep_atom_mask (torch.Tensor):
[N_atom]
Returns:
torch.Tensor: per-atom lddt
[..., N_sample, N_atom]
"""
N_atom = true_coordinate.size(-2)
atom_m_mask = (rep_atom_mask * is_polymer).bool() # [N_atom]
# Distance: d_lm
pred_d_lm = torch.cdist(
pred_coordinate, pred_coordinate[..., atom_m_mask, :]
) # [..., N_sample, N_atom, N_atom(m)]
true_d_lm = torch.cdist(
true_coordinate, true_coordinate[..., atom_m_mask, :]
) # [..., N_atom, N_atom(m)]
delta_d_lm = torch.abs(
pred_d_lm - true_d_lm.unsqueeze(dim=-3)
) # [..., N_sample, N_atom, N_atom(m)]
# Pair-wise lddt
thresholds = [0.5, 1, 2, 4]
lddt_lm = (
torch.stack([delta_d_lm < t for t in thresholds], dim=-1)
.to(dtype=delta_d_lm.dtype)
.mean(dim=-1)
) # [..., N_sample, N_atom, N_atom(m)]
# Select atoms that are within certain threshold to l in ground truth
# Restrict to bespoke inclusion radius
is_nucleotide = is_nucleotide[
..., atom_m_mask
].bool() # [N_atom(m)] or [..., N_atom(m)]
locality_mask = (
true_d_lm < self.is_nucleotide_threshold
) * is_nucleotide.unsqueeze(dim=-2) + (
true_d_lm < self.is_not_nucleotide_threshold
) * (
~is_nucleotide.unsqueeze(dim=-2)
) # [..., N_atom, N_atom(m)]
# Remove self-distance computation
diagonal_mask = ((1 - torch.eye(n=N_atom)).bool().to(true_d_lm.device))[
..., atom_m_mask
] # [N_atom, N_atom(m)]
pair_mask = (locality_mask * diagonal_mask).unsqueeze(
dim=-3
) # [..., 1, N_atom, N_atom(m)]
per_atom_lddt = torch.sum(
lddt_lm * pair_mask, dim=-1, keepdim=True
) # [..., N_sample, N_atom, 1]
if self.normalize:
per_atom_lddt = per_atom_lddt / (
torch.sum(pair_mask.to(dtype=per_atom_lddt.dtype), dim=-1, keepdim=True)
+ self.eps
)
# Distribute into bins
boundaries = torch.linspace(
start=self.min_bin,
end=self.max_bin,
steps=self.no_bins + 1,
device=true_coordinate.device,
) # [N_bins]
true_bins = torch.sum(
per_atom_lddt > boundaries, dim=-1
) # [..., N_sample, N_atom], range in [1, no_bins]
true_bins = torch.clamp(
true_bins, min=1, max=self.no_bins
) # just in case bin=0/no_bins+1 occurs
true_bins = F.one_hot(
true_bins - 1, self.no_bins
) # [..., N_sample, N_atom, N_bins]
return true_bins
def forward(
self,
logits: torch.Tensor,
pred_coordinate: torch.Tensor,
true_coordinate: torch.Tensor,
coordinate_mask: torch.Tensor,
is_nucleotide: torch.Tensor,
is_polymer: torch.Tensor,
rep_atom_mask: torch.Tensor,
) -> torch.Tensor:
"""PLDDT loss
Args:
logits (torch.Tensor): logits
[..., N_sample, N_atom, no_bins:=50]
pred_coordinate (torch.Tensor): predicted coordinates
[..., N_sample, N_atom, 3]
true_coordinate (torch.Tensor): true coordinates
[..., N_atom, 3]
coordinate_mask (torch.Tensor): whether true coordinates exist
[N_atom]
is_nucleotide (torch.Tensor): "is_rna" or "is_dna"
[N_atom]
is_polymer (torch.Tensor): not "is_ligand"
[N_atom]
rep_atom_mask (torch.Tensor): representative atom of each token
[N_atom]
Returns:
torch.Tensor: the return loss
[...] if self.reduction is None else []
"""
assert (
is_nucleotide.shape
== is_polymer.shape
== rep_atom_mask.shape
== coordinate_mask.shape
== coordinate_mask.view(-1).shape
)
coordinate_mask = coordinate_mask.bool()
rep_atom_mask = rep_atom_mask.bool()
is_nucleotide = is_nucleotide.bool()
is_polymer = is_polymer.bool()
with torch.no_grad():
true_bins = self.calculate_label(
pred_coordinate=pred_coordinate[..., coordinate_mask, :],
true_coordinate=true_coordinate[..., coordinate_mask, :],
is_nucleotide=is_nucleotide[coordinate_mask],
is_polymer=is_polymer[coordinate_mask],
rep_atom_mask=rep_atom_mask[coordinate_mask],
).detach() # [..., N_sample, N_atom_with_coords, N_bins]
plddt_loss = softmax_cross_entropy(
logits=logits[..., coordinate_mask, :],
labels=true_bins,
) # [..., N_sample, N_atom_with_coords]
# Average over atoms
plddt_loss = plddt_loss.mean(dim=-1) # [..., N_sample]
# Average over samples
plddt_loss = plddt_loss.mean(dim=-1) # [...]
return loss_reduction(plddt_loss, method=self.reduction)
class WatermarkLoss(nn.Module):
"""
Implements Watermark Loss in AF3
"""
def __init__(
self,
eps: float = 1e-6,
reduction: str = "mean",
) -> None:
super(WatermarkLoss, self).__init__()
self.eps = eps
self.reduction = reduction
def forward(
self,
pred_code: torch.Tensor,
gt_code: torch.Tensor,
) -> torch.Tensor:
# Clamp logits to avoid extreme values leading to instability
pred_code = torch.clamp(pred_code, min=-10, max=10)
loss_fn = nn.BCEWithLogitsLoss(reduction='none')
code_loss = loss_fn(pred_code, gt_code.float()).mean(dim=-1)
# Add epsilon to avoid division by zero and NaN during mean computation
epsilon = 1e-6
predicted_classes = (torch.sigmoid(pred_code) > 0.5).float()
recovery = ((predicted_classes == gt_code.float()).float().mean(dim=-1)).clamp(min=epsilon)
recovery = recovery.mean().clamp(min=epsilon)
return loss_reduction(code_loss, method=self.reduction)
class ProtenixLoss(nn.Module):
"""Aggregation of the various losses"""
def __init__(self, configs) -> None:
super(ProtenixLoss, self).__init__()
self.configs = configs
self.alpha_confidence = self.configs.loss.weight.alpha_confidence
self.alpha_pae = self.configs.loss.weight.alpha_pae
self.alpha_except_pae = self.configs.loss.weight.alpha_except_pae
self.alpha_diffusion = self.configs.loss.weight.alpha_diffusion
self.alpha_distogram = self.configs.loss.weight.alpha_distogram
self.alpha_bond = self.configs.loss.weight.alpha_bond
self.weight_smooth_lddt = self.configs.loss.weight.smooth_lddt
self.weight_watermark = self.configs.loss.weight.watermark
self.lddt_radius = {
"is_nucleotide_threshold": 30.0,
"is_not_nucleotide_threshold": 15.0,
}
self.loss_weight = {
# confidence
"plddt_loss": self.alpha_confidence * self.alpha_except_pae,
"pde_loss": self.alpha_confidence * self.alpha_except_pae,
"resolved_loss": self.alpha_confidence * self.alpha_except_pae,
"pae_loss": self.alpha_confidence * self.alpha_pae,
# diffusion
"mse_loss": self.alpha_diffusion,
"bond_loss": self.alpha_diffusion * self.alpha_bond,
"smooth_lddt_loss": self.alpha_diffusion
* self.weight_smooth_lddt, # Different from AF3 appendix eq(6), where smooth_lddt has no weight
# distogram
"distogram_loss": self.alpha_distogram,
"watermark_loss": self.weight_watermark,
}
# Loss
self.plddt_loss = PLDDTLoss(**configs.loss.plddt, **self.lddt_radius)
self.pde_loss = PDELoss(**configs.loss.pde)
self.resolved_loss = ExperimentallyResolvedLoss(**configs.loss.resolved)
self.pae_loss = PAELoss(**configs.loss.pae)
self.mse_loss = MSELoss(**configs.loss.diffusion.mse)
self.bond_loss = BondLoss(**configs.loss.diffusion.bond)
self.smooth_lddt_loss = SmoothLDDTLoss(**configs.loss.diffusion.smooth_lddt)
self.distogram_loss = DistogramLoss(**configs.loss.distogram)
self.watermark_loss = WatermarkLoss(**configs.loss.watermark)
def calculate_label(
self,
feat_dict: dict[str, Any],
label_dict: dict[str, Any],
) -> dict[str, Any]:
"""calculate true distance, and atom pair mask
Args:
feat_dict (dict): Feature dictionary containing additional features.
label_dict (dict): Label dictionary containing ground truth data.
Returns:
label_dict (dict): with the following updates:
distance (torch.Tensor): true atom-atom distance.
[..., N_atom, N_atom]
distance_mask (torch.Tensor): atom-atom mask indicating whether true distance exists.
[..., N_atom, N_atom]
"""
# Distance mask
distance_mask = (
label_dict["coordinate_mask"][..., None]
* label_dict["coordinate_mask"][..., None, :]
)
# Distances for all atom pairs
# Note: we convert to bf16 for saving cuda memory, if performance drops, do not convert it
distance = (
cdist(label_dict["coordinate"], label_dict["coordinate"]) * distance_mask
).to(
label_dict["coordinate"].dtype
) # [..., N_atom, N_atom]
lddt_mask = compute_lddt_mask(
true_distance=distance,
distance_mask=distance_mask,
is_nucleotide=feat_dict["is_rna"].bool() + feat_dict["is_dna"].bool(),
**self.lddt_radius,
)
label_dict["lddt_mask"] = lddt_mask
label_dict["distance_mask"] = distance_mask
if not self.configs.loss_metrics_sparse_enable:
label_dict["distance"] = distance
del distance, distance_mask, lddt_mask
return label_dict
def calculate_prediction(
self,
pred_dict: dict[str, torch.Tensor],
) -> dict[str, torch.Tensor]:
"""get more predictions used for calculating difference losses
Args:
pred_dict (dict[str, torch.Tensor]): raw prediction dict given by the model
Returns:
dict[str, torch.Tensor]: updated predictions
"""
if not self.configs.loss_metrics_sparse_enable:
pred_dict["distance"] = torch.cdist(
pred_dict["coordinate"], pred_dict["coordinate"]
).to(
pred_dict["coordinate"].dtype
) # [..., N_atom, N_atom]
return pred_dict
def aggregate_losses(
self, loss_fns: dict, has_valid_resolution: Optional[torch.Tensor] = None
) -> tuple[torch.Tensor, dict]:
"""
Aggregates multiple loss functions and their respective metrics.
Args:
loss_fns (dict): Dictionary of loss functions to be aggregated.
has_valid_resolution (Optional[torch.Tensor]): Tensor indicating valid resolutions. Defaults to None.
Returns:
tuple[torch.Tensor, dict]:
- cum_loss (torch.Tensor): Cumulative loss.
- all_metrics (dict): Dictionary containing all metrics.
"""
cum_loss = 0.0
all_metrics = {}
for loss_name, loss_fn in loss_fns.items():
weight = self.loss_weight[loss_name]
loss_outputs = loss_fn()
if isinstance(loss_outputs, tuple):
loss, metrics = loss_outputs
else:
assert isinstance(loss_outputs, torch.Tensor)
loss, metrics = loss_outputs, {}
all_metrics.update(
{f"{loss_name}/{key}": val for key, val in metrics.items()}
)
if torch.isnan(loss) or torch.isinf(loss):
logging.warning(f"{loss_name} loss is NaN. Skipping...")
if (
(has_valid_resolution is not None)
and (has_valid_resolution.sum() == 0)
and (
loss_name in ["plddt_loss", "pde_loss", "resolved_loss", "pae_loss"]
)
):
loss = 0.0 * loss
else:
all_metrics[loss_name] = loss.detach().clone()
all_metrics[f"weighted_{loss_name}"] = weight * loss.detach().clone()
cum_loss = cum_loss + weight * loss
all_metrics["loss"] = cum_loss.detach().clone()
return cum_loss, all_metrics
def calculate_losses(
self,
feat_dict: dict[str, Any],
pred_dict: dict[str, torch.Tensor],
label_dict: dict[str, Any],
mode: str = "train",
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
"""
Calculate the cumulative loss and aggregated metrics for the given predictions and labels.
Args:
feat_dict (dict[str, Any]): Feature dictionary containing additional features.
pred_dict (dict[str, torch.Tensor]): Prediction dictionary containing model outputs.
label_dict (dict[str, Any]): Label dictionary containing ground truth data.
mode (str): Mode of operation ('train', 'eval', 'inference'). Defaults to 'train'.
Returns:
tuple[torch.Tensor, dict[str, torch.Tensor]]:
- cum_loss (torch.Tensor): Cumulative loss.
- metrics (dict[str, torch.Tensor]): Dictionary containing aggregated metrics.
"""
assert mode in ["train", "eval", "inference"]
if mode == "train":
# Confidence Loss: use mini-rollout coordinates
confidence_coordinate = "coordinate_mini"
if not self.configs.train_confidence_only:
# Scale diffusion loss with noise-level
diffusion_per_sample_scale = (
pred_dict["noise_level"] ** 2 + self.configs.sigma_data**2
) / (self.configs.sigma_data * pred_dict["noise_level"]) ** 2
else:
# Confidence Loss: use diffusion coordinates
confidence_coordinate = "coordinate"
# No scale is required
diffusion_per_sample_scale = None
if self.configs.train_confidence_only and mode == "train":
# Skip Diffusion Loss and distogram loss
loss_fns = {}
else:
# Diffusion Loss: SmoothLDDTLoss / BondLoss / MSELoss
loss_fns = {}
if self.configs.loss.diffusion_lddt_loss_dense:
loss_fns.update(
{
"smooth_lddt_loss": lambda: self.smooth_lddt_loss.dense_forward(
pred_coordinate=pred_dict["coordinate"],
true_coordinate=label_dict["coordinate"],
lddt_mask=label_dict["lddt_mask"],
diffusion_chunk_size=self.configs.loss.diffusion_lddt_chunk_size,
) # it's faster is not OOM
}
)
elif self.configs.loss.diffusion_sparse_loss_enable:
loss_fns.update(
{
"smooth_lddt_loss": lambda: self.smooth_lddt_loss.sparse_forward(
pred_coordinate=pred_dict["coordinate"],
true_coordinate=label_dict["coordinate"],
lddt_mask=label_dict["lddt_mask"],
diffusion_chunk_size=self.configs.loss.diffusion_lddt_chunk_size,
)
}
)
else:
loss_fns.update(
{
"smooth_lddt_loss": lambda: self.smooth_lddt_loss(
pred_distance=pred_dict["distance"],
true_distance=label_dict["distance"],
distance_mask=label_dict["distance_mask"],
lddt_mask=label_dict["lddt_mask"],
diffusion_chunk_size=self.configs.loss.diffusion_lddt_chunk_size,
)
}
)
loss_fns.update(
{
"bond_loss": lambda: (
self.bond_loss.sparse_forward(
pred_coordinate=pred_dict["coordinate"],
true_coordinate=label_dict["coordinate"],
distance_mask=label_dict["distance_mask"],
bond_mask=feat_dict["bond_mask"],
per_sample_scale=diffusion_per_sample_scale,
)
if self.configs.loss.diffusion_sparse_loss_enable
else self.bond_loss(
pred_distance=pred_dict["distance"],
true_distance=label_dict["distance"],
distance_mask=label_dict["distance_mask"],
bond_mask=feat_dict["bond_mask"],
per_sample_scale=diffusion_per_sample_scale,
diffusion_chunk_size=self.configs.loss.diffusion_bond_chunk_size,
)
),
"mse_loss": lambda: self.mse_loss(
pred_coordinate=pred_dict["coordinate"],
true_coordinate=label_dict["coordinate"],
coordinate_mask=label_dict["coordinate_mask"],
is_rna=feat_dict["is_rna"],
is_dna=feat_dict["is_dna"],
is_ligand=feat_dict["is_ligand"],
per_sample_scale=diffusion_per_sample_scale,
),
}
)
# Distogram Loss
if "distogram" in pred_dict:
loss_fns.update(
{
"distogram_loss": lambda: self.distogram_loss(
logits=pred_dict["distogram"],
true_coordinate=label_dict["coordinate"],
coordinate_mask=label_dict["coordinate_mask"],
rep_atom_mask=feat_dict["distogram_rep_atom_mask"],
)
}
)
# Watermark Loss
if "watermark" in pred_dict:
loss_fns.update(
{
"watermark_loss": lambda: self.watermark_loss(
pred_code=pred_dict["watermark"],
gt_code=label_dict["watermark"]
)
}
)
# Confidence Loss:
# Only when resoluton is in [min_resolution, max_resolution] the confidence loss is considered
# NOTE: here we assume batch_size == 1
resolution = feat_dict["resolution"].item()
has_valid_resolution = (resolution >= self.configs.loss.resolution.min) & (
resolution <= self.configs.loss.resolution.max
)
if has_valid_resolution:
has_valid_resolution = torch.tensor(
[1.0],
dtype=label_dict["coordinate"].dtype,
device=label_dict["coordinate"].device,
)
else:
has_valid_resolution = torch.tensor(
[0.0],
dtype=label_dict["coordinate"].dtype,
device=label_dict["coordinate"].device,
)
if all(x in pred_dict for x in ["plddt", "pde", "pae", "resolved"]):
loss_fns.update(
{
"plddt_loss": lambda: self.plddt_loss(
logits=pred_dict["plddt"],
pred_coordinate=pred_dict[confidence_coordinate].detach(),
true_coordinate=label_dict["coordinate"],
coordinate_mask=label_dict["coordinate_mask"],
rep_atom_mask=feat_dict["plddt_m_rep_atom_mask"],
is_nucleotide=feat_dict["is_rna"] + feat_dict["is_dna"],
is_polymer=1 - feat_dict["is_ligand"],
),
"pde_loss": lambda: self.pde_loss(
logits=pred_dict["pde"],
pred_coordinate=pred_dict[confidence_coordinate].detach(),
true_coordinate=label_dict["coordinate"],
coordinate_mask=label_dict["coordinate_mask"],
rep_atom_mask=feat_dict["distogram_rep_atom_mask"],
),
"resolved_loss": lambda: self.resolved_loss(
logits=pred_dict["resolved"],
coordinate_mask=label_dict["coordinate_mask"],
),
"pae_loss": lambda: self.pae_loss(
logits=pred_dict["pae"],
pred_coordinate=pred_dict[confidence_coordinate].detach(),
true_coordinate=label_dict["coordinate"],
coordinate_mask=label_dict["coordinate_mask"],
frame_atom_index=feat_dict["frame_atom_index"],
rep_atom_mask=feat_dict["pae_rep_atom_mask"],
has_frame=feat_dict["has_frame"],
),
}
)
cum_loss, metrics = self.aggregate_losses(loss_fns, has_valid_resolution)
return cum_loss, metrics
def forward(
self,
feat_dict: dict[str, Any],
pred_dict: dict[str, torch.Tensor],
label_dict: dict[str, Any],
mode: str = "train",
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
"""
Forward pass for calculating the cumulative loss and aggregated metrics.
Args:
feat_dict (dict[str, Any]): Feature dictionary containing additional features.
pred_dict (dict[str, torch.Tensor]): Prediction dictionary containing model outputs.
label_dict (dict[str, Any]): Label dictionary containing ground truth data.
mode (str): Mode of operation ('train', 'eval', 'inference'). Defaults to 'train'.
Returns:
tuple[torch.Tensor, dict[str, torch.Tensor]]:
- cum_loss (torch.Tensor): Cumulative loss.
- losses (dict[str, torch.Tensor]): Dictionary containing aggregated metrics.
"""
diffusion_chunk_size = self.configs.loss.diffusion_chunk_size_outer
assert mode in ["train", "eval", "inference"]
# Pre-computations
with torch.no_grad():
label_dict = self.calculate_label(feat_dict, label_dict)
pred_dict = self.calculate_prediction(pred_dict)
if diffusion_chunk_size <= 0:
# Calculate losses
cum_loss, losses = self.calculate_losses(
feat_dict=feat_dict,
pred_dict=pred_dict,
label_dict=label_dict,
mode=mode,
)
else:
if "coordinate" in pred_dict:
N_sample = pred_dict["coordinate"].shape[-3]
elif self.configs.train_confidence_only:
N_sample = pred_dict["coordinate_mini"].shape[-3]
else:
raise KeyError("Missing key: coordinate (in pred_dict).")
no_chunks = N_sample // diffusion_chunk_size + (
N_sample % diffusion_chunk_size != 0
)
cum_loss = 0.0
losses = {}
for i in range(no_chunks):
cur_sample_num = min(
diffusion_chunk_size, N_sample - i * diffusion_chunk_size
)
pred_dict_i = {}
for key, value in pred_dict.items():
if key in ["coordinate"] and mode == "train":
pred_dict_i[key] = value[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size,
:,
:,
]
elif (
key in ["coordinate", "plddt", "pae", "pde", "resolved"]
and mode != "train"
):
pred_dict_i[key] = value[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size,
:,
:,
]
elif key == "noise_level":
pred_dict_i[key] = value[
i * diffusion_chunk_size : (i + 1) * diffusion_chunk_size
]
else:
pred_dict_i[key] = value
pred_dict_i = self.calculate_prediction(pred_dict_i)
cum_loss_i, losses_i = self.calculate_losses(
feat_dict=feat_dict,
pred_dict=pred_dict_i,
label_dict=label_dict,
mode=mode,
)
cum_loss += cum_loss_i * cur_sample_num
# Aggregate metrics
for key, value in losses_i.items():
if key in losses:
losses[key] += value * cur_sample_num
else:
losses[key] = value * cur_sample_num
cum_loss /= N_sample
for key in losses.keys():
losses[key] /= N_sample
return cum_loss, losses
|