File size: 14,417 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Union

import torch
import torch.nn as nn

from protenix.model.modules.pairformer import PairformerStack
from protenix.model.modules.primitives import LinearNoBias
from protenix.model.utils import broadcast_token_to_atom, one_hot
from protenix.openfold_local.model.primitives import LayerNorm
from protenix.utils.torch_utils import cdist


class ConfidenceHead(nn.Module):
    """
    Implements Algorithm 31 in AF3
    """

    def __init__(
        self,
        n_blocks: int = 4,
        c_s: int = 384,
        c_z: int = 128,
        c_s_inputs: int = 449,
        b_pae: int = 64,
        b_pde: int = 64,
        b_plddt: int = 50,
        b_resolved: int = 2,
        max_atoms_per_token: int = 20,
        pairformer_dropout: float = 0.0,
        blocks_per_ckpt: Optional[int] = None,
        distance_bin_start: float = 3.25,
        distance_bin_end: float = 52.0,
        distance_bin_step: float = 1.25,
        stop_gradient: bool = True,
    ) -> None:
        """
        Args:
            n_blocks (int, optional): number of blocks for ConfidenceHead. Defaults to 4.
            c_s (int, optional):  hidden dim [for single embedding]. Defaults to 384.
            c_z (int, optional): hidden dim [for pair embedding]. Defaults to 128.
            c_s_inputs (int, optional): hidden dim [for single embedding from InputFeatureEmbedder]. Defaults to 449.
            b_pae (int, optional): the bin number for pae. Defaults to 64.
            b_pde (int, optional): the bin numer for pde. Defaults to 64.
            b_plddt (int, optional): the bin number for plddt. Defaults to 50.
            b_resolved (int, optional): the bin number for resolved. Defaults to 2.
            max_atoms_per_token (int, optional): max atoms in a token. Defaults to 20.
            pairformer_dropout (float, optional): dropout ratio for Pairformer. Defaults to 0.0.
            blocks_per_ckpt: number of Pairformer blocks in each activation checkpoint
            distance_bin_start (float, optional): Start of the distance bin range. Defaults to 3.375.
            distance_bin_end (float, optional): End of the distance bin range. Defaults to 21.375.
            distance_bin_step (float, optional): Step size for the distance bins. Defaults to 1.25.
            stop_gradient (bool, optional): Whether to stop gradient propagation. Defaults to True.
        """
        super(ConfidenceHead, self).__init__()
        self.n_blocks = n_blocks
        self.c_s = c_s
        self.c_z = c_z
        self.c_s_inputs = c_s_inputs
        self.b_pae = b_pae
        self.b_pde = b_pde
        self.b_plddt = b_plddt
        self.b_resolved = b_resolved
        self.max_atoms_per_token = max_atoms_per_token
        self.stop_gradient = stop_gradient
        self.linear_no_bias_s1 = LinearNoBias(
            in_features=self.c_s_inputs, out_features=self.c_z
        )
        self.linear_no_bias_s2 = LinearNoBias(
            in_features=self.c_s_inputs, out_features=self.c_z
        )
        lower_bins = torch.arange(
            distance_bin_start, distance_bin_end, distance_bin_step
        )
        upper_bins = torch.cat([lower_bins[1:], torch.tensor([1e6])])

        self.lower_bins = nn.Parameter(lower_bins, requires_grad=False)
        self.upper_bins = nn.Parameter(upper_bins, requires_grad=False)
        self.num_bins = len(lower_bins)  # + 1

        self.linear_no_bias_d = LinearNoBias(
            in_features=self.num_bins, out_features=self.c_z
        )

        self.pairformer_stack = PairformerStack(
            c_z=self.c_z,
            c_s=self.c_s,
            n_blocks=n_blocks,
            dropout=pairformer_dropout,
            blocks_per_ckpt=blocks_per_ckpt,
        )
        self.linear_no_bias_pae = LinearNoBias(
            in_features=self.c_z, out_features=self.b_pae
        )
        self.linear_no_bias_pde = LinearNoBias(
            in_features=self.c_z, out_features=self.b_pde
        )
        self.plddt_weight = nn.Parameter(
            data=torch.empty(size=(self.max_atoms_per_token, self.c_s, self.b_plddt))
        )
        self.resolved_weight = nn.Parameter(
            data=torch.empty(size=(self.max_atoms_per_token, self.c_s, self.b_resolved))
        )

        self.linear_no_bias_s_inputs = LinearNoBias(self.c_s_inputs, self.c_s)
        self.linear_no_bias_s_trunk = LinearNoBias(self.c_s, self.c_s)
        self.layernorm_s_trunk = LayerNorm(self.c_s)
        self.linear_no_bias_z_trunk = LinearNoBias(self.c_z, self.c_z)
        self.layernorm_z_trunk = LayerNorm(self.c_z)

        self.layernorm_no_bias_z_cat = nn.LayerNorm(self.c_z * 2, bias=False)
        self.layernorm_no_bias_s_cat = nn.LayerNorm(self.c_s * 2, bias=False)
        self.linear_no_bias_z_cat = LinearNoBias(self.c_z * 2, self.c_z)
        self.linear_no_bias_s_cat = LinearNoBias(self.c_s * 2, self.c_s)

        # Output layernorm
        self.pae_ln = LayerNorm(self.c_z)
        self.pde_ln = LayerNorm(self.c_z)
        self.plddt_ln = LayerNorm(self.c_s)
        self.resolved_ln = LayerNorm(self.c_s)

        with torch.no_grad():
            # Zero init for output layer (before softmax) to zero
            nn.init.zeros_(self.linear_no_bias_pae.weight)
            nn.init.zeros_(self.linear_no_bias_pde.weight)
            nn.init.zeros_(self.plddt_weight)
            nn.init.zeros_(self.resolved_weight)

            # Zero init for trunk embedding input layer
            # nn.init.zeros_(self.linear_no_bias_s_trunk.weight)
            # nn.init.zeros_(self.linear_no_bias_z_trunk.weight)

    def forward(
        self,
        input_feature_dict: dict[str, Union[torch.Tensor, int, float, dict]],
        s_inputs: torch.Tensor,
        s_trunk: torch.Tensor,
        z_trunk: torch.Tensor,
        pair_mask: torch.Tensor,
        x_pred_coords: torch.Tensor,
        use_memory_efficient_kernel: bool = False,
        use_deepspeed_evo_attention: bool = False,
        use_lma: bool = False,
        inplace_safe: bool = False,
        chunk_size: Optional[int] = None,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Args:
            input_feature_dict: Dictionary containing input features.
            s_inputs (torch.Tensor): single embedding from InputFeatureEmbedder
                [..., N_tokens, c_s_inputs]
            s_trunk (torch.Tensor): single feature embedding from PairFormer (Alg17)
                [..., N_tokens, c_s]
            z_trunk (torch.Tensor): pair feature embedding from PairFormer (Alg17)
                [..., N_tokens, N_tokens, c_z]
            pair_mask (torch.Tensor): pair mask
                [..., N_token, N_token]
            x_pred_coords (torch.Tensor): predicted coordinates
                [..., N_sample, N_atoms, 3]
            use_memory_efficient_kernel (bool, optional): Whether to use memory-efficient kernel. Defaults to False.
            use_deepspeed_evo_attention (bool, optional): Whether to use DeepSpeed evolutionary attention. Defaults to False.
            use_lma (bool, optional): Whether to use low-memory attention. Defaults to False.
            inplace_safe (bool, optional): Whether to use inplace operations. Defaults to False.
            chunk_size (Optional[int], optional): Chunk size for memory-efficient operations. Defaults to None.

        Returns:
            tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
                - plddt_preds: Predicted pLDDT scores [..., N_sample, N_atom, plddt_bins].
                - pae_preds: Predicted PAE scores [..., N_sample, N_token, N_token, pae_bins].
                - pde_preds: Predicted PDE scores [..., N_sample, N_token, N_token, pde_bins].
                - resolved_preds: Predicted resolved scores [..., N_sample, N_atom, 2].
        """

        if self.stop_gradient:
            s_inputs = s_inputs.detach()
            s_trunk = s_trunk.detach()
            z_trunk = z_trunk.detach()

        s_trunk = self.linear_no_bias_s_trunk(self.layernorm_s_trunk(s_trunk))
        z_trunk = self.linear_no_bias_z_trunk(self.layernorm_z_trunk(z_trunk))

        z_init = (
            self.linear_no_bias_s1(s_inputs)[..., None, :, :]
            + self.linear_no_bias_s2(s_inputs)[..., None, :]
        )
        s_init = self.linear_no_bias_s_inputs(s_inputs)
        s_trunk = torch.cat([s_init, s_trunk], dim=-1)
        z_trunk = torch.cat([z_init, z_trunk], dim=-1)

        s_trunk = self.linear_no_bias_s_cat(self.layernorm_no_bias_s_cat(s_trunk))
        z_trunk = self.linear_no_bias_z_cat(self.layernorm_no_bias_z_cat(z_trunk))

        if not self.training:
            del z_init
            torch.cuda.empty_cache()

        x_rep_atom_mask = input_feature_dict[
            "distogram_rep_atom_mask"
        ].bool()  # [N_atom]
        x_pred_rep_coords = x_pred_coords[..., x_rep_atom_mask, :]
        N_sample = x_pred_rep_coords.size(-3)

        plddt_preds, pae_preds, pde_preds, resolved_preds = [], [], [], []
        for i in range(N_sample):
            plddt_pred, pae_pred, pde_pred, resolved_pred = (
                self.memory_efficient_forward(
                    input_feature_dict=input_feature_dict,
                    s_trunk=s_trunk.clone() if inplace_safe else s_trunk,
                    z_pair=z_trunk.clone() if inplace_safe else z_trunk,
                    pair_mask=pair_mask,
                    x_pred_rep_coords=x_pred_rep_coords[..., i, :, :],
                    use_memory_efficient_kernel=use_memory_efficient_kernel,
                    use_deepspeed_evo_attention=use_deepspeed_evo_attention,
                    use_lma=use_lma,
                    inplace_safe=inplace_safe,
                    chunk_size=chunk_size,
                )
            )
            if z_trunk.shape[-2] > 2000 and (not self.training):
                # cpu offload pae_preds/pde_preds
                pae_pred = pae_pred.cpu()
                pde_pred = pde_pred.cpu()
                torch.cuda.empty_cache()
            plddt_preds.append(plddt_pred)
            pae_preds.append(pae_pred)
            pde_preds.append(pde_pred)
            resolved_preds.append(resolved_pred)
        plddt_preds = torch.stack(
            plddt_preds, dim=-3
        )  # [..., N_sample, N_atom, plddt_bins]
        # Pae_preds/pde_preds single tensor will occupy 11.6G[BF16]/23.2G[FP32]
        pae_preds = torch.stack(
            pae_preds, dim=-4
        )  # [..., N_sample, N_token, N_token, pae_bins]
        pde_preds = torch.stack(
            pde_preds, dim=-4
        )  # [..., N_sample, N_token, N_token, pde_bins]
        resolved_preds = torch.stack(
            resolved_preds, dim=-3
        )  # [..., N_sample, N_atom, 2]
        return plddt_preds, pae_preds, pde_preds, resolved_preds

    def memory_efficient_forward(
        self,
        input_feature_dict: dict[str, Union[torch.Tensor, int, float, dict]],
        s_trunk: torch.Tensor,
        z_pair: torch.Tensor,
        pair_mask: torch.Tensor,
        x_pred_rep_coords: torch.Tensor,
        use_memory_efficient_kernel: bool = False,
        use_deepspeed_evo_attention: bool = False,
        use_lma: bool = False,
        inplace_safe: bool = False,
        chunk_size: Optional[int] = None,
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Args:
            ...
            x_pred_coords (torch.Tensor): predicted coordinates
                [..., N_atoms, 3] # Note: N_sample = 1 for avoiding CUDA OOM
        """
        # Embed pair distances of representative atoms:
        distance_pred = cdist(
            x_pred_rep_coords, x_pred_rep_coords
        )  # [..., N_tokens, N_tokens]
        if inplace_safe:
            z_pair += self.linear_no_bias_d(
                one_hot(
                    x=distance_pred,
                    lower_bins=self.lower_bins,
                    upper_bins=self.upper_bins,
                )
            )  # [..., N_tokens, N_tokens, c_z]
        else:
            z_pair = z_pair + self.linear_no_bias_d(
                one_hot(
                    x=distance_pred,
                    lower_bins=self.lower_bins,
                    upper_bins=self.upper_bins,
                )
            )  # [..., N_tokens, N_tokens, c_z]
        # Line 4
        s_single, z_pair = self.pairformer_stack(
            s_trunk,
            z_pair,
            pair_mask,
            use_memory_efficient_kernel=use_memory_efficient_kernel,
            use_deepspeed_evo_attention=use_deepspeed_evo_attention,
            use_lma=use_lma,
            inplace_safe=inplace_safe,
            chunk_size=chunk_size,
        )

        pae_pred = self.linear_no_bias_pae(self.pae_ln(z_pair))
        pde_pred = self.linear_no_bias_pde(
            self.pde_ln(z_pair + z_pair.transpose(-2, -3))
        )

        atom_to_token_idx = input_feature_dict[
            "atom_to_token_idx"
        ]  # in range [0, N_token-1] shape: [N_atom]
        atom_to_tokatom_idx = input_feature_dict[
            "atom_to_tokatom_idx"
        ]  # in range [0, max_atoms_per_token-1] shape: [N_atom] # influenced by crop
        # Broadcast s_single: [N_tokens, c_s] -> [N_atoms, c_s]
        a = broadcast_token_to_atom(
            x_token=s_single, atom_to_token_idx=atom_to_token_idx
        )
        plddt_pred = torch.einsum(
            "...nc,ncb->...nb", self.plddt_ln(a), self.plddt_weight[atom_to_tokatom_idx]
        )
        resolved_pred = torch.einsum(
            "...nc,ncb->...nb",
            self.resolved_ln(a),
            self.resolved_weight[atom_to_tokatom_idx],
        )
        if not self.training and z_pair.shape[-2] > 2000:
            torch.cuda.empty_cache()
        return plddt_pred, pae_pred, pde_pred, resolved_pred