File size: 31,909 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from functools import partial
from typing import Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Linear

from protenix.model.utils import (
    flatten_final_dims,
    move_final_dim_to_dim,
    pad_at_dim,
    reshape_at_dim,
)
from protenix.openfold_local.model.primitives import LayerNorm
from protenix.openfold_local.utils.chunk_utils import chunk_layer

LinearNoBias = partial(Linear, bias=False)


class AdaptiveLayerNorm(nn.Module):
    """
    Implements Algorithm 26 in AF3
    """

    def __init__(self, c_a: int = 768, c_s: int = 384) -> None:
        """
        Args:
            c_a (int, optional): the embedding dim of a(single feature aggregated atom info). Defaults to 768.
            c_s (int, optional):  hidden dim [for single embedding]. Defaults to 384.
        """
        super(AdaptiveLayerNorm, self).__init__()
        self.layernorm_a = nn.LayerNorm(c_a, elementwise_affine=False, bias=False)
        # The pytorch version should be newer than 2.1
        self.layernorm_s = nn.LayerNorm(c_s, bias=False)
        self.linear_s = Linear(in_features=c_s, out_features=c_a)
        self.linear_nobias_s = LinearNoBias(in_features=c_s, out_features=c_a)

    def zero_init(self):
        nn.init.zeros_(self.linear_s.weight)
        nn.init.zeros_(self.linear_s.bias)
        nn.init.zeros_(self.linear_nobias_s.weight)

    def forward(self, a: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
        """
        Args:
            a (torch.Tensor): the single feature aggregate per-atom representation
                [..., N_token, c_a]
            s (torch.Tensor): single embedding
                [..., N_token, c_s]

        Returns:
            torch.Tensor: the updated a from AdaLN
                [..., N_token, c_a]
        """
        a = self.layernorm_a(a)
        s = self.layernorm_s(s)
        a = torch.sigmoid(self.linear_s(s)) * a + self.linear_nobias_s(s)
        return a


class BiasInitLinear(Linear):
    """Support biasinit for nn.Linear Called just like torch.nn.Linear."""

    def __init__(
        self,
        in_features: int,
        out_features: int,
        bias: bool = True,
        biasinit: float = 0.0,
    ) -> None:
        """
        Args:
            in_features (int): in_features
            out_features (int): out_features
            bias (bool, optional): whether add bias. Defaults to True.
            biasinit (float, optional): the initial bias value. Defaults to 0.0.
        """
        super(BiasInitLinear, self).__init__(
            in_features=in_features, out_features=out_features, bias=bias
        )
        nn.init.zeros_(tensor=self.weight)
        if bias:
            nn.init.constant_(tensor=self.bias, val=biasinit)


class Transition(nn.Module):
    """
    Implements Algorithm 11 in AF3
    """

    def __init__(self, c_in: int, n: int) -> None:
        """
        Args:
            c_in (int, optional): the input dimension.
            n (int, optional): factor by which c_in is multiplied to obtain hidden dimension.
        """
        super(Transition, self).__init__()
        self.n = n
        self.c_in = c_in
        self.layernorm1 = LayerNorm(c_in)
        self.linear_no_bias_a = LinearNoBias(in_features=c_in, out_features=n * c_in)
        self.linear_no_bias_b = LinearNoBias(in_features=c_in, out_features=n * c_in)
        self.linear_no_bias = LinearNoBias(in_features=n * c_in, out_features=c_in)
        self.zero_init()

    def zero_init(self):
        nn.init.zeros_(self.linear_no_bias.weight)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x (torch.Tensor): the input tensor
                [..., c]

        Returns:
            torch.Tensor: the output tensor as the same shape of x
                [..., c]
        """
        if self.training:
            x = self.layernorm1(x)
            a = self.linear_no_bias_a(x)
            b = self.linear_no_bias_b(x)
            x = self.linear_no_bias(F.silu(a) * b)
            return x
        else:
            other_dims = x.shape[:-1]
            dim_size = x.shape[-1]
            size = x.shape[-2]
            x = x.reshape(-1, dim_size)
            chunk_num = 1 if size < 3200 else 8
            chunks = torch.chunk(x, chunk_num, dim=-2)
            outputs = torch.empty(
                (x.shape[0], self.c_in), dtype=x.dtype, device=x.device
            )
            start = 0
            for chunk in chunks:
                y = self.layernorm1(chunk)
                a = self.linear_no_bias_a(y)
                a = F.silu(a, True)
                b = self.linear_no_bias_b(y)
                del y
                b *= a
                del a
                b = self.linear_no_bias(b)
                outputs[start : start + b.shape[0]] = b
                start += b.shape[0]
                del b
            outputs = outputs.reshape(*other_dims, self.c_in)
            return outputs


def _attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    attn_bias: Optional[torch.Tensor] = None,
    use_efficient_implementation: bool = False,
    attn_weight_dropout_p: float = 0.0,
    inplace_safe: bool = False,
) -> torch.Tensor:
    """Attention.

    Args:
        q (torch.Tensor): query tensor of shape [..., n_q, d]
        k (torch.Tensor): key tensor of shape [..., n_kv, d]
        v (torch.Tensor): value tensor of shape[..., n_kv, d]
        attn_bias (torch.Tensor, optional): attention bias tensor of shape [..., n_q, n_kv]. Defaults to None.
        use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False.
        attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0.

    Returns:
        torch.Tensor: output of tensor [..., n_q, d]
    """
    assert k.shape == v.shape
    if use_efficient_implementation:
        attn_output = F.scaled_dot_product_attention(
            query=q,
            key=k,
            value=v,
            attn_mask=attn_bias,
            dropout_p=attn_weight_dropout_p,
        )
        return attn_output
    # [..., n_kv, d] -> [..., d, n_kv]
    k = k.transpose(-1, -2)

    # [..., n_q, d], [..., d, n_kv] -> [..., n_q, n_kv]
    attn_weights = q @ k

    if attn_bias is not None:
        if inplace_safe:
            attn_weights += attn_bias
        else:
            attn_weights = attn_weights + attn_bias

    # [..., n_q, n_kv]
    attn_weights = F.softmax(attn_weights, dim=-1)

    # [..., n_q, n_kv], [..., n_kv, d] -> [..., n_q, d]
    attn_output = attn_weights @ v

    return attn_output


def rearrange_qk_to_dense_trunk(
    q: Union[torch.Tensor, list[torch.Tensor]],
    k: Union[torch.Tensor, list[torch.Tensor]],
    dim_q: Union[int, list[int]],
    dim_k: Union[int, list[int]],
    n_queries: int = 32,
    n_keys: int = 128,
    compute_mask: bool = True,
) -> tuple[Union[torch.Tensor, list[torch.Tensor]]]:
    """Rearrange q/k into blocked tensors for local operations.

    Args:
        q (torch.Tensor): query tensor. Could be a tensor or a list of tensors.
            [..., n_q, ...] (n_q is at dimension dim_q)
        k (torch.Tensor | List[torch.Tensor]): key tensor. Could be a tensor or a list of tensors.
            [..., n_k, ...] (n_k is at dimension dim_k)
        dim_q (int): along which dimension to build the trunks. Could be an int or a list of int.
        dim_k (int): along which dimension to build the trunks. Could be an int or a list of int.
        n_queries (int, optional): local window size of query tensor.
        n_keys (int, optional): local window size of key/value tensor.

    Returns:
        tuple[Union[torch.Tensor, list[torch.Tensor]]]:
            q_trunked: torch.Tensor or list of tensors. Same as the input type.
                [..., n_trunks, n_queries, ...]
            k_trunked: torch.Tensor or list of tensors. Same as the input type.
                [..., n_trunks, n_keys, ...]
            padding_info (dict):
                mask_trunked: torch.Tensor
                    [n_trunks, n_queries, n_keys]
                q_pad: query padded dimension
    """

    assert n_keys >= n_queries
    assert n_queries & 0x01 == 0
    assert n_keys & 0x01 == 0

    def basic_checks(x, dim_x):
        if isinstance(x, list):
            x_is_list = True
            assert isinstance(dim_x, list)
        else:
            x_is_list = False
            x = [x]
            dim_x = [dim_x]
        n_x = x[0].size(dim_x[0])
        for i in range(len(dim_x)):
            if dim_x[i] < 0:
                dim_x[i] = len(x[i].shape) + dim_x[i]
            assert x[i].size(dim_x[i]) == n_x
        return x, dim_x, x_is_list, n_x, len(x)

    q, dim_q, q_is_list, n, num_q = basic_checks(q, dim_q)
    k, dim_k, k_is_list, n_k, num_k = basic_checks(k, dim_k)

    assert n == n_k
    n_trunks = int(math.ceil(n / n_queries))
    q_pad_length = n_trunks * n_queries - n

    q_new = [
        pad_at_dim(q[i], dim=dim_q[i], pad_length=(0, q_pad_length))
        for i in range(num_q)
    ]
    q_trunked = [
        reshape_at_dim(q_new[i], dim=dim_q[i], target_shape=(n_trunks, n_queries))
        for i in range(num_q)
    ]

    pad_left = (n_keys - n_queries) // 2
    pad_right = int((n_trunks - 1 / 2) * n_queries + n_keys / 2 - n + 1 / 2)

    k_new = [
        pad_at_dim(k[i], dim=dim_k[i], pad_length=(pad_left, pad_right))
        for i in range(num_k)
    ]
    k_trunked = [
        k_new[i].unfold(dim_k[i], size=n_keys, step=n_queries) for i in range(num_k)
    ]
    k_trunked = [
        move_final_dim_to_dim(k_trunked[i], dim=dim_k[i] + 1) for i in range(num_k)
    ]

    if compute_mask:
        pad_mask = q[0].new_ones(
            *(1,) * len(q[0].shape[:-2]),
            n + q_pad_length,
            n + pad_left + pad_right,
            requires_grad=False,
        )
        pad_mask[..., :n, 0:pad_left] = 0
        pad_mask[..., :n, pad_left + n : :] = 0
        pad_mask[..., n::, :] = 0

        concat_split_data = optimized_concat_split(pad_mask, n_queries)
        pad_mask_trunked = (
            concat_split_data.unfold(
                -1, n_keys, pad_mask.size(-1) + n_queries
            ).transpose(-2, -3)
        ).bool()
    else:
        pad_mask_trunked = None

    if not q_is_list:
        q_trunked = q_trunked[0]
    if not k_is_list:
        k_trunked = k_trunked[0]

    padding_info = {
        "mask_trunked": pad_mask_trunked,
        "q_pad": q_pad_length,
        "k_pad_left": pad_left,
        "k_pad_right": pad_right,
    }

    return q_trunked, k_trunked, padding_info


def optimized_concat_split(attn_bias: torch.Tensor, n_queries: int) -> torch.Tensor:
    """Optimized concatenation and splitting of attention bias tensor.

    Args:
        attn_bias (torch.Tensor): The attention bias tensor.
            Shape: [..., D, E]
        n_queries (int): The number of queries in each split.

    Returns:
        torch.Tensor: The reshaped and permuted attention bias tensor.
            Shape: [..., n_queries, D // n_queries * E]
    """
    D = attn_bias.size(-2)
    E = attn_bias.size(-1)
    assert D % n_queries == 0
    num_splits = D // n_queries
    reshaped = attn_bias.reshape(*attn_bias.shape[:-2], num_splits, n_queries, E)
    permuted = reshaped.permute(*range(reshaped.dim() - 3), -2, -3, -1)
    output = permuted.reshape(*attn_bias.shape[:-2], n_queries, num_splits * E)
    return output


def rearrange_to_dense_trunk(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    n_queries: int,
    n_keys: int,
    attn_bias: Optional[torch.Tensor] = None,
    inf: float = 1e10,
) -> tuple[Union[torch.Tensor, int]]:
    """Rearrange q/k/v/bias into blocked tensors for local attention.

    Args:
        q (torch.Tensor): query tensor
            [..., n_q, d]
        k (torch.Tensor): key tensor
            [..., n_kv, d]
        v (torch.Tensor): value tensor
            [..., n_kv, d]
        attn_bias (torch.Tensor, optional): attention bias
            [..., n_q, n_kv] or None
        n_queries (int, optional): local window size of query tensor.
        n_keys (int, optional): local window size of key/value tensor.
        inf (float, optional): used for attention masking. Defaults to 1e10.

    Returns:
        tuple[Union[torch.Tensor, int]]:
            q_trunked
                [..., n_trunks, n_queries, d]
            k_trunked / v_trunked
                [..., n_trunks, n_keys, d]
            attn_bias_trunked:  padded position filled with -inf
                [..., n_trunks, n_queries, n_keys]
            q_pad_length: query padded dimension
    """
    assert n_keys >= n_queries
    assert n_queries & 0x01 == 0
    assert n_keys & 0x01 == 0

    n, d = q.shape[-2:]

    q_trunked, kv_trunked, padding_info = rearrange_qk_to_dense_trunk(
        q=q,
        k=[k, v],
        dim_q=-2,
        dim_k=[-2, -2],
        n_queries=n_queries,
        n_keys=n_keys,
        compute_mask=False,
    )
    q_pad_length, pad_left, pad_right = (
        padding_info["q_pad"],
        padding_info["k_pad_left"],
        padding_info["k_pad_right"],
    )

    # Padded_width = n + pad_left + pad_right
    if attn_bias is None:
        attn_bias = q.new_zeros(
            *(1,) * len(q.shape[:-2]), n + q_pad_length, n + pad_left + pad_right
        )
        attn_bias[..., :n, 0:pad_left] = -inf
        attn_bias[..., :n, pad_left + n : :] = -inf
        attn_bias[..., n::, :] = -inf
    else:
        attn_bias = F.pad(attn_bias, (pad_left, pad_right, 0, q_pad_length), value=-inf)

    concat_split_data = optimized_concat_split(attn_bias, n_queries)
    attn_bias_trunked = concat_split_data.unfold(
        -1, n_keys, attn_bias.shape[-1] + n_queries
    ).transpose(-2, -3)
    return q_trunked, kv_trunked[0], kv_trunked[1], attn_bias_trunked, q_pad_length


def _local_attention(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    n_queries: int,
    n_keys: int,
    attn_bias: Optional[torch.Tensor] = None,
    trunked_attn_bias: Optional[torch.Tensor] = None,
    inf: float = 1e10,
    use_efficient_implementation: bool = False,
    attn_weight_dropout_p: float = 0.0,
    inplace_safe: bool = False,
    chunk_size: Optional[int] = None,
) -> torch.Tensor:
    """Local attention

    Args:
        q (torch.Tensor): query tensor
            [..., Q, d]
        k (torch.Tensor): key tensor
            [..., K, d]
        v (torch.Tensor): value tensor
            [..., K, d]
        n_queries (int): local window size of query.
        n_keys (int): local window size of key/value.
        attn_bias (torch.Tensor, optional): the input biases for attention. Defaults to None.
            [..., Q, K]
        trunked_attn_bias (torch.Tensor, optional): the input biases where shape has been rearranged to dense trunks. Defaults to None.
            [..., n_trunks, n_queries, n_keys]
        inf (float): inf number used for attention bias. Defaults to 1e10.
        use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False.
        attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0.
    Returns:
        torch.Tensor: standard attention output
            [..., Q, d]
    """
    assert q.shape == k.shape == v.shape  # local attention doesn't make sense if Q != K

    # Prepare for attention qkv, q: [..., n_trunks, n_queries, d], kv: [..., n_trunks, n_keys, d]

    # Rerrange to dense trunks
    # q: [*, n, d] -> [*, n_trunks, n_queries, d]
    # kv: [*, n, d] -> [*, n_trunks, n_keys, d]
    # attn_bias: [*, n, d] -> [*, n_trunks, n_queries, n_keys]
    q_trunked, k_trunked, v_trunked, attn_bias_trunked, q_pad_length = (
        rearrange_to_dense_trunk(
            q=q,
            k=k,
            v=v,
            n_queries=n_queries,
            n_keys=n_keys,
            attn_bias=attn_bias,
            inf=inf,
        )
    )

    # Apply attention
    # [..., n_trunks, n_queries, d]
    if trunked_attn_bias is not None:
        attn_bias_trunked = attn_bias_trunked + trunked_attn_bias

    if chunk_size is not None:
        attn_inputs = {
            "q": q_trunked,
            "k": k_trunked,
            "v": v_trunked,
            "attn_bias": attn_bias_trunked,
        }
        out = chunk_layer(
            partial(
                _attention,
                use_efficient_implementation=use_efficient_implementation,
                attn_weight_dropout_p=attn_weight_dropout_p,
                inplace_safe=inplace_safe,
            ),
            attn_inputs,
            chunk_size=chunk_size,
            no_batch_dims=len(attn_bias_trunked.shape[:-2]),
            _out=None,
        )
    else:
        out = _attention(
            q=q_trunked,
            k=k_trunked,
            v=v_trunked,
            attn_bias=attn_bias_trunked,
            use_efficient_implementation=use_efficient_implementation,
            attn_weight_dropout_p=attn_weight_dropout_p,
            inplace_safe=inplace_safe,
        )

    # Revert back to orignal shape and remove q_pad_length
    # [..., n_trunks, n_queries, d] ->  [..., n_trunks * n_queries, d] ->  [..., n, d]
    out = out.reshape(*out.shape[:-3], -1, out.shape[-1])
    if q_pad_length > 0:
        out = out[..., :-q_pad_length, :]
    return out


def create_local_attn_bias(
    n: int, n_queries: int, n_keys: int, inf: float = 1e10, device: torch.device = None
) -> torch.Tensor:
    """Create local attention bias based on query window n_queries and kv window n_keys.

    Args:
        n (int): the length of quiries
        n_queries (int): window size of quiries
        n_keys (int): window size of keys/values
        inf (float, optional): the inf to mask attention. Defaults to 1e10.
        device (torch.device, optional): cuda|cpu|None. Defaults to None.

    Returns:
        torch.Tensor: the diagonal-like global attention bias
    """
    n_trunks = int(math.ceil(n / n_queries))
    padded_n = n_trunks * n_queries
    attn_mask = torch.zeros(padded_n, padded_n, device=device)
    for block_index in range(0, n_trunks):
        i = block_index * n_queries
        j1 = max(0, n_queries * block_index - (n_keys - n_queries) // 2)
        j2 = n_queries * block_index + (n_queries + n_keys) // 2
        attn_mask[i : i + n_queries, j1:j2] = 1.0
    attn_bias = (1 - attn_mask) * -inf
    return attn_bias.to(device=device)[:n, :n]


class Attention(nn.Module):
    """Standard multi-head attention
    Ref to openfold:
    https://github.com/aqlaboratory/openfold/blob/feb45a521e11af1db241a33d58fb175e207f8ce0/openfold/model/primitives.py#L340
    """

    def __init__(
        self,
        c_q: int,
        c_k: int,
        c_v: int,
        c_hidden: int,
        num_heads: int,
        gating: bool = True,
        q_linear_bias: bool = False,
        local_attention_method: str = "global_attention_with_bias",
        use_efficient_implementation: bool = False,
        attn_weight_dropout_p: float = 0.0,
    ) -> None:
        """

        Args:
            c_q (int): Input dimension of query data
            c_k (int): Input dimension of key data
            c_v (int): Input dimension of value data
            c_hidden (int): Per-head hidden dimension
            num_heads (int): Number of attention heads
            gating (bool, optional): Whether the output should be gated using query data. Defaults to True.
            q_linear_bias (bool, optional): whether use Linear with bias as in AF3. Defaults to False.
            local_attention_method (str, optional): local attention method, options:
              - global_attention_with_bias: use full size global attention with sparse attention bias
              - local_cross_attention: use local cross attention to minimize computation
            use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False.
            attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0.

        Notes:
            if use_efficient_implementation == True, torch.nn.functional.scaled_dot_product_attention will
            be used to compute attention efficiently
            There are currently three supported implementations of scaled dot product attention:
                1. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

                2. Memory-Efficient Attention

                3. A PyTorch implementation defined in C++ matching the above formulation

            The function may call optimized kernels for improved performance when using the CUDA backend.
            For all other backends, the PyTorch implementation will be used.All implementations are enabled by default.
            Scaled dot product attention attempts to automatically select the most optimal implementation based on the inputs.
        """
        super(Attention, self).__init__()
        self.c_q = c_q
        self.c_k = c_k
        self.c_v = c_v
        self.c_hidden = c_hidden
        self.num_heads = num_heads
        self.gating = gating
        self.local_attention_method = local_attention_method
        self.use_efficient_implementation = use_efficient_implementation
        self.attn_weight_dropout_p = attn_weight_dropout_p

        # DISCREPANCY: c_hidden is not the per-head channel dimension, as
        # stated in the supplement, but the overall channel dimension.
        if q_linear_bias:
            # Attention in AF3
            self.linear_q = Linear(
                in_features=self.c_q, out_features=self.c_hidden * self.num_heads
            )
        else:
            # Vanilla attention
            self.linear_q = LinearNoBias(self.c_q, self.c_hidden * self.num_heads)
        self.linear_k = LinearNoBias(self.c_k, self.c_hidden * self.num_heads)
        self.linear_v = LinearNoBias(self.c_v, self.c_hidden * self.num_heads)
        self.linear_o = LinearNoBias(self.c_hidden * self.num_heads, self.c_q)
        self.linear_g = None
        if self.gating:
            self.linear_g = LinearNoBias(self.c_q, self.c_hidden * self.num_heads)
            self.sigmoid = nn.Sigmoid()

        # Zero init the output layer
        nn.init.zeros_(self.linear_o.weight)

    def _prep_qkv(
        self, q_x: torch.Tensor, kv_x: torch.Tensor, apply_scale: bool = True
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Prepare qkv

        Args:
            q_x (torch.Tensor): the input x for q
                [..., c_q]
            kv_x (torch.Tensor): the input x for kv
                [..., c_k]
                [..., c_v]
            apply_scale (bool, optional): apply scale to dot product qk. Defaults to True.

        Returns:
            tuple[torch.Tensor, torch.Tensor, torch.Tensor]: the return q/k/v
                # [..., H, Q/K/V, C_hidden]
        """
        # [*, Q/K/V, H * C_hidden]
        q = self.linear_q(q_x)
        k = self.linear_k(kv_x)
        v = self.linear_v(kv_x)

        # [*, Q/K/V, H, C_hidden]
        q = q.view(q.shape[:-1] + (self.num_heads, -1))
        k = k.view(k.shape[:-1] + (self.num_heads, -1))
        v = v.view(v.shape[:-1] + (self.num_heads, -1))

        # [*, H, Q/K/V, C_hidden]
        q = q.transpose(-2, -3)
        k = k.transpose(-2, -3)
        v = v.transpose(-2, -3)

        if apply_scale:
            q = q / math.sqrt(self.c_hidden)

        return q, k, v

    def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
        """

        Args:
            o (torch.Tensor): the output of attention
                [..., G/Q, H, C_hidden]
            q_x (torch.Tensor): the input for gated g
                [..., Q, c_q]

        Returns:
            torch.Tensor: the output of attention
        """
        if self.linear_g is not None:
            g = self.sigmoid(self.linear_g(q_x))

            # [*, G/Q, H, C_hidden]
            g = g.view(g.shape[:-1] + (self.num_heads, -1))
            o = o * g

        # [*, Q, H * C_hidden]
        o = flatten_final_dims(o, num_dims=2)

        # [*, Q, C_q]
        o = self.linear_o(o)

        return o

    def forward(
        self,
        q_x: torch.Tensor,
        kv_x: torch.Tensor,
        attn_bias: Optional[torch.Tensor] = None,
        trunked_attn_bias: Optional[torch.Tensor] = None,
        n_queries: Optional[int] = None,
        n_keys: Optional[int] = None,
        inf: Optional[float] = 1e10,
        inplace_safe: bool = False,
        chunk_size: Optional[int] = None,
    ) -> torch.Tensor:
        """

        Args:
            q_x (torch.Tensor): the input x for q
                [..., Q, C_q]
            kv_x (torch.Tensor): the input x for k/v
                [..., K, C_k]
            attn_bias (torch.Tensor, optional): the input biases for attention. Defaults to None.
                [..., H, Q, K] or [..., Q, K]
            trunked_attn_bias (torch.Tensor, optional): the input biases where shape has been rearranged to dense trunks. Defaults to None.
                [..., H, n_trunks, n_queries, n_keys] or [..., n_trunks, n_queries, n_keys]
            n_queries (int, optional): local window size of query tensor. If not None, will perform local attention. Defaults to None.
            n_keys (int, optional): local window size of key tensor. Defaults to None.

        Returns:
            torch.Tensor: attention update
                [*, Q, C_q]
        """

        q, k, v = self._prep_qkv(q_x=q_x, kv_x=kv_x, apply_scale=True)

        if attn_bias is not None:
            if len(attn_bias.shape) == len(q.shape):
                assert attn_bias.shape[:-2] == q.shape[:-2]
            else:
                assert len(attn_bias.shape) == len(q.shape) - 1
                assert attn_bias.shape[:-2] == q.shape[:-3]
                # Expand at head dim, got shape [..., 1, Q, K]
                attn_bias = attn_bias.unsqueeze(dim=-3)

        if trunked_attn_bias is not None:
            # NOTE: trunked_attn_bias can only be used with "local_cross_attention" method
            assert n_queries and n_keys
            assert self.local_attention_method == "local_cross_attention"

            if len(trunked_attn_bias.shape) == len(q.shape) + 1:
                assert trunked_attn_bias.shape[:-3] == q.shape[:-2]
            else:
                assert len(trunked_attn_bias.shape) == len(q.shape)
                # Expand at head dim, got shape [..., 1, n_trunks, n_queries, n_keys]
                trunked_attn_bias = trunked_attn_bias.unsqueeze(dim=-4)

        if n_queries and n_keys:
            if self.local_attention_method == "global_attention_with_bias":
                local_attn_bias = create_local_attn_bias(
                    q.shape[-2], n_queries, n_keys, inf=inf, device=q.device
                )
                # Expand to same shape as attn_bias
                local_attn_bias = local_attn_bias.reshape(
                    (1,) * (len(q.shape[:-2])) + local_attn_bias.shape
                )
                if attn_bias is not None:
                    if inplace_safe:
                        local_attn_bias += attn_bias
                    else:
                        local_attn_bias = local_attn_bias + attn_bias
                o = _attention(
                    q=q,
                    k=k,
                    v=v,
                    attn_bias=local_attn_bias,
                    use_efficient_implementation=self.use_efficient_implementation,
                    attn_weight_dropout_p=self.attn_weight_dropout_p,
                    inplace_safe=inplace_safe,
                )

            elif self.local_attention_method == "local_cross_attention":
                o = _local_attention(
                    q=q,
                    k=k,
                    v=v,
                    n_queries=n_queries,
                    n_keys=n_keys,
                    attn_bias=attn_bias,
                    trunked_attn_bias=trunked_attn_bias,
                    inf=inf,
                    use_efficient_implementation=self.use_efficient_implementation,
                    attn_weight_dropout_p=self.attn_weight_dropout_p,
                    inplace_safe=inplace_safe,
                    chunk_size=chunk_size,
                )
            else:
                raise ValueError(
                    f"Invalid local attention method: {self.local_attention_method}"
                )
        else:
            o = _attention(
                q=q,
                k=k,
                v=v,
                attn_bias=attn_bias,
                use_efficient_implementation=self.use_efficient_implementation,
                attn_weight_dropout_p=self.attn_weight_dropout_p,
                inplace_safe=inplace_safe,
            )  # [*, H, Q, C_hidden]
        o = o.transpose(-2, -3)  # o: [*, Q, H, C_hidden]
        o = self._wrap_up(o, q_x)  # q_x: [*, Q, c_q]

        return o


def gather_pair_embedding_in_dense_trunk(
    x: torch.Tensor, idx_q: torch.Tensor, idx_k: torch.Tensor
):
    """
    Selectively gather elements from a tensor using two sets of indices.

        x: [..., N_token, N_token, d]
        idx_q: [N_b, N_q]
        idx_k: [N_b, N_k]

    Return:
        y: [..., N_b, N_q, N_k, d]
            where y[..., b, i, j, :] = x[..., idx_q[b, i], idx_k[b, j], :]
    """
    idx_q = idx_q.long()
    idx_k = idx_k.long()
    assert len(idx_q.shape) == len(idx_k.shape) == 2

    # Get the shape parameters
    N_b, N_q = idx_q.shape
    N_k = idx_k.shape[1]

    # Expand idx_q and idx_k to match the shape required for advanced indexing
    idx_q_expanded = idx_q.unsqueeze(-1).expand(-1, -1, N_k)
    idx_k_expanded = idx_k.unsqueeze(1).expand(-1, N_q, -1)

    # Use advanced indexing to gather the desired elements
    y = x[..., idx_q_expanded, idx_k_expanded, :]

    return y


def broadcast_token_to_local_atom_pair(
    z_token: torch.Tensor,
    atom_to_token_idx: torch.Tensor,
    n_queries: int,
    n_keys: int,
    compute_mask: bool = True,
) -> torch.Tensor:
    """Broadcast token pair embedding to atom pair embedding

    Args:
        z_token (torch.Tensor): token pair embedding
            [..., N_token, N_token, d]
        atom_to_token_idx (torch.Tensor): map atom idx to token idx
            [N_atom]

    Returns:
        z_gathered_blocked (torch.Tensor): atom pair embedding, with local blocked shape
            [..., n_trunks, n_queries, n_keys, d]
        pad_mask (torch.Tensor):
            [n_trunks, n_queries, n_keys]
        q_pad_length (int)
    """

    # [N_atom] -> [n_trunks, n_queries] and [n_trunks, n_keys]
    atom_to_token_idx_q, atom_to_token_idx_k, pad_info = rearrange_qk_to_dense_trunk(
        atom_to_token_idx,
        atom_to_token_idx,
        dim_q=-1,
        dim_k=-1,
        n_queries=n_queries,
        n_keys=n_keys,
        compute_mask=compute_mask,
    )

    z_gathered_blocked = gather_pair_embedding_in_dense_trunk(
        z_token, idx_q=atom_to_token_idx_q, idx_k=atom_to_token_idx_k
    )

    return z_gathered_blocked, pad_info