File size: 31,909 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from functools import partial
from typing import Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Linear
from protenix.model.utils import (
flatten_final_dims,
move_final_dim_to_dim,
pad_at_dim,
reshape_at_dim,
)
from protenix.openfold_local.model.primitives import LayerNorm
from protenix.openfold_local.utils.chunk_utils import chunk_layer
LinearNoBias = partial(Linear, bias=False)
class AdaptiveLayerNorm(nn.Module):
"""
Implements Algorithm 26 in AF3
"""
def __init__(self, c_a: int = 768, c_s: int = 384) -> None:
"""
Args:
c_a (int, optional): the embedding dim of a(single feature aggregated atom info). Defaults to 768.
c_s (int, optional): hidden dim [for single embedding]. Defaults to 384.
"""
super(AdaptiveLayerNorm, self).__init__()
self.layernorm_a = nn.LayerNorm(c_a, elementwise_affine=False, bias=False)
# The pytorch version should be newer than 2.1
self.layernorm_s = nn.LayerNorm(c_s, bias=False)
self.linear_s = Linear(in_features=c_s, out_features=c_a)
self.linear_nobias_s = LinearNoBias(in_features=c_s, out_features=c_a)
def zero_init(self):
nn.init.zeros_(self.linear_s.weight)
nn.init.zeros_(self.linear_s.bias)
nn.init.zeros_(self.linear_nobias_s.weight)
def forward(self, a: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
"""
Args:
a (torch.Tensor): the single feature aggregate per-atom representation
[..., N_token, c_a]
s (torch.Tensor): single embedding
[..., N_token, c_s]
Returns:
torch.Tensor: the updated a from AdaLN
[..., N_token, c_a]
"""
a = self.layernorm_a(a)
s = self.layernorm_s(s)
a = torch.sigmoid(self.linear_s(s)) * a + self.linear_nobias_s(s)
return a
class BiasInitLinear(Linear):
"""Support biasinit for nn.Linear Called just like torch.nn.Linear."""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
biasinit: float = 0.0,
) -> None:
"""
Args:
in_features (int): in_features
out_features (int): out_features
bias (bool, optional): whether add bias. Defaults to True.
biasinit (float, optional): the initial bias value. Defaults to 0.0.
"""
super(BiasInitLinear, self).__init__(
in_features=in_features, out_features=out_features, bias=bias
)
nn.init.zeros_(tensor=self.weight)
if bias:
nn.init.constant_(tensor=self.bias, val=biasinit)
class Transition(nn.Module):
"""
Implements Algorithm 11 in AF3
"""
def __init__(self, c_in: int, n: int) -> None:
"""
Args:
c_in (int, optional): the input dimension.
n (int, optional): factor by which c_in is multiplied to obtain hidden dimension.
"""
super(Transition, self).__init__()
self.n = n
self.c_in = c_in
self.layernorm1 = LayerNorm(c_in)
self.linear_no_bias_a = LinearNoBias(in_features=c_in, out_features=n * c_in)
self.linear_no_bias_b = LinearNoBias(in_features=c_in, out_features=n * c_in)
self.linear_no_bias = LinearNoBias(in_features=n * c_in, out_features=c_in)
self.zero_init()
def zero_init(self):
nn.init.zeros_(self.linear_no_bias.weight)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (torch.Tensor): the input tensor
[..., c]
Returns:
torch.Tensor: the output tensor as the same shape of x
[..., c]
"""
if self.training:
x = self.layernorm1(x)
a = self.linear_no_bias_a(x)
b = self.linear_no_bias_b(x)
x = self.linear_no_bias(F.silu(a) * b)
return x
else:
other_dims = x.shape[:-1]
dim_size = x.shape[-1]
size = x.shape[-2]
x = x.reshape(-1, dim_size)
chunk_num = 1 if size < 3200 else 8
chunks = torch.chunk(x, chunk_num, dim=-2)
outputs = torch.empty(
(x.shape[0], self.c_in), dtype=x.dtype, device=x.device
)
start = 0
for chunk in chunks:
y = self.layernorm1(chunk)
a = self.linear_no_bias_a(y)
a = F.silu(a, True)
b = self.linear_no_bias_b(y)
del y
b *= a
del a
b = self.linear_no_bias(b)
outputs[start : start + b.shape[0]] = b
start += b.shape[0]
del b
outputs = outputs.reshape(*other_dims, self.c_in)
return outputs
def _attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
use_efficient_implementation: bool = False,
attn_weight_dropout_p: float = 0.0,
inplace_safe: bool = False,
) -> torch.Tensor:
"""Attention.
Args:
q (torch.Tensor): query tensor of shape [..., n_q, d]
k (torch.Tensor): key tensor of shape [..., n_kv, d]
v (torch.Tensor): value tensor of shape[..., n_kv, d]
attn_bias (torch.Tensor, optional): attention bias tensor of shape [..., n_q, n_kv]. Defaults to None.
use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False.
attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0.
Returns:
torch.Tensor: output of tensor [..., n_q, d]
"""
assert k.shape == v.shape
if use_efficient_implementation:
attn_output = F.scaled_dot_product_attention(
query=q,
key=k,
value=v,
attn_mask=attn_bias,
dropout_p=attn_weight_dropout_p,
)
return attn_output
# [..., n_kv, d] -> [..., d, n_kv]
k = k.transpose(-1, -2)
# [..., n_q, d], [..., d, n_kv] -> [..., n_q, n_kv]
attn_weights = q @ k
if attn_bias is not None:
if inplace_safe:
attn_weights += attn_bias
else:
attn_weights = attn_weights + attn_bias
# [..., n_q, n_kv]
attn_weights = F.softmax(attn_weights, dim=-1)
# [..., n_q, n_kv], [..., n_kv, d] -> [..., n_q, d]
attn_output = attn_weights @ v
return attn_output
def rearrange_qk_to_dense_trunk(
q: Union[torch.Tensor, list[torch.Tensor]],
k: Union[torch.Tensor, list[torch.Tensor]],
dim_q: Union[int, list[int]],
dim_k: Union[int, list[int]],
n_queries: int = 32,
n_keys: int = 128,
compute_mask: bool = True,
) -> tuple[Union[torch.Tensor, list[torch.Tensor]]]:
"""Rearrange q/k into blocked tensors for local operations.
Args:
q (torch.Tensor): query tensor. Could be a tensor or a list of tensors.
[..., n_q, ...] (n_q is at dimension dim_q)
k (torch.Tensor | List[torch.Tensor]): key tensor. Could be a tensor or a list of tensors.
[..., n_k, ...] (n_k is at dimension dim_k)
dim_q (int): along which dimension to build the trunks. Could be an int or a list of int.
dim_k (int): along which dimension to build the trunks. Could be an int or a list of int.
n_queries (int, optional): local window size of query tensor.
n_keys (int, optional): local window size of key/value tensor.
Returns:
tuple[Union[torch.Tensor, list[torch.Tensor]]]:
q_trunked: torch.Tensor or list of tensors. Same as the input type.
[..., n_trunks, n_queries, ...]
k_trunked: torch.Tensor or list of tensors. Same as the input type.
[..., n_trunks, n_keys, ...]
padding_info (dict):
mask_trunked: torch.Tensor
[n_trunks, n_queries, n_keys]
q_pad: query padded dimension
"""
assert n_keys >= n_queries
assert n_queries & 0x01 == 0
assert n_keys & 0x01 == 0
def basic_checks(x, dim_x):
if isinstance(x, list):
x_is_list = True
assert isinstance(dim_x, list)
else:
x_is_list = False
x = [x]
dim_x = [dim_x]
n_x = x[0].size(dim_x[0])
for i in range(len(dim_x)):
if dim_x[i] < 0:
dim_x[i] = len(x[i].shape) + dim_x[i]
assert x[i].size(dim_x[i]) == n_x
return x, dim_x, x_is_list, n_x, len(x)
q, dim_q, q_is_list, n, num_q = basic_checks(q, dim_q)
k, dim_k, k_is_list, n_k, num_k = basic_checks(k, dim_k)
assert n == n_k
n_trunks = int(math.ceil(n / n_queries))
q_pad_length = n_trunks * n_queries - n
q_new = [
pad_at_dim(q[i], dim=dim_q[i], pad_length=(0, q_pad_length))
for i in range(num_q)
]
q_trunked = [
reshape_at_dim(q_new[i], dim=dim_q[i], target_shape=(n_trunks, n_queries))
for i in range(num_q)
]
pad_left = (n_keys - n_queries) // 2
pad_right = int((n_trunks - 1 / 2) * n_queries + n_keys / 2 - n + 1 / 2)
k_new = [
pad_at_dim(k[i], dim=dim_k[i], pad_length=(pad_left, pad_right))
for i in range(num_k)
]
k_trunked = [
k_new[i].unfold(dim_k[i], size=n_keys, step=n_queries) for i in range(num_k)
]
k_trunked = [
move_final_dim_to_dim(k_trunked[i], dim=dim_k[i] + 1) for i in range(num_k)
]
if compute_mask:
pad_mask = q[0].new_ones(
*(1,) * len(q[0].shape[:-2]),
n + q_pad_length,
n + pad_left + pad_right,
requires_grad=False,
)
pad_mask[..., :n, 0:pad_left] = 0
pad_mask[..., :n, pad_left + n : :] = 0
pad_mask[..., n::, :] = 0
concat_split_data = optimized_concat_split(pad_mask, n_queries)
pad_mask_trunked = (
concat_split_data.unfold(
-1, n_keys, pad_mask.size(-1) + n_queries
).transpose(-2, -3)
).bool()
else:
pad_mask_trunked = None
if not q_is_list:
q_trunked = q_trunked[0]
if not k_is_list:
k_trunked = k_trunked[0]
padding_info = {
"mask_trunked": pad_mask_trunked,
"q_pad": q_pad_length,
"k_pad_left": pad_left,
"k_pad_right": pad_right,
}
return q_trunked, k_trunked, padding_info
def optimized_concat_split(attn_bias: torch.Tensor, n_queries: int) -> torch.Tensor:
"""Optimized concatenation and splitting of attention bias tensor.
Args:
attn_bias (torch.Tensor): The attention bias tensor.
Shape: [..., D, E]
n_queries (int): The number of queries in each split.
Returns:
torch.Tensor: The reshaped and permuted attention bias tensor.
Shape: [..., n_queries, D // n_queries * E]
"""
D = attn_bias.size(-2)
E = attn_bias.size(-1)
assert D % n_queries == 0
num_splits = D // n_queries
reshaped = attn_bias.reshape(*attn_bias.shape[:-2], num_splits, n_queries, E)
permuted = reshaped.permute(*range(reshaped.dim() - 3), -2, -3, -1)
output = permuted.reshape(*attn_bias.shape[:-2], n_queries, num_splits * E)
return output
def rearrange_to_dense_trunk(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
n_queries: int,
n_keys: int,
attn_bias: Optional[torch.Tensor] = None,
inf: float = 1e10,
) -> tuple[Union[torch.Tensor, int]]:
"""Rearrange q/k/v/bias into blocked tensors for local attention.
Args:
q (torch.Tensor): query tensor
[..., n_q, d]
k (torch.Tensor): key tensor
[..., n_kv, d]
v (torch.Tensor): value tensor
[..., n_kv, d]
attn_bias (torch.Tensor, optional): attention bias
[..., n_q, n_kv] or None
n_queries (int, optional): local window size of query tensor.
n_keys (int, optional): local window size of key/value tensor.
inf (float, optional): used for attention masking. Defaults to 1e10.
Returns:
tuple[Union[torch.Tensor, int]]:
q_trunked
[..., n_trunks, n_queries, d]
k_trunked / v_trunked
[..., n_trunks, n_keys, d]
attn_bias_trunked: padded position filled with -inf
[..., n_trunks, n_queries, n_keys]
q_pad_length: query padded dimension
"""
assert n_keys >= n_queries
assert n_queries & 0x01 == 0
assert n_keys & 0x01 == 0
n, d = q.shape[-2:]
q_trunked, kv_trunked, padding_info = rearrange_qk_to_dense_trunk(
q=q,
k=[k, v],
dim_q=-2,
dim_k=[-2, -2],
n_queries=n_queries,
n_keys=n_keys,
compute_mask=False,
)
q_pad_length, pad_left, pad_right = (
padding_info["q_pad"],
padding_info["k_pad_left"],
padding_info["k_pad_right"],
)
# Padded_width = n + pad_left + pad_right
if attn_bias is None:
attn_bias = q.new_zeros(
*(1,) * len(q.shape[:-2]), n + q_pad_length, n + pad_left + pad_right
)
attn_bias[..., :n, 0:pad_left] = -inf
attn_bias[..., :n, pad_left + n : :] = -inf
attn_bias[..., n::, :] = -inf
else:
attn_bias = F.pad(attn_bias, (pad_left, pad_right, 0, q_pad_length), value=-inf)
concat_split_data = optimized_concat_split(attn_bias, n_queries)
attn_bias_trunked = concat_split_data.unfold(
-1, n_keys, attn_bias.shape[-1] + n_queries
).transpose(-2, -3)
return q_trunked, kv_trunked[0], kv_trunked[1], attn_bias_trunked, q_pad_length
def _local_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
n_queries: int,
n_keys: int,
attn_bias: Optional[torch.Tensor] = None,
trunked_attn_bias: Optional[torch.Tensor] = None,
inf: float = 1e10,
use_efficient_implementation: bool = False,
attn_weight_dropout_p: float = 0.0,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""Local attention
Args:
q (torch.Tensor): query tensor
[..., Q, d]
k (torch.Tensor): key tensor
[..., K, d]
v (torch.Tensor): value tensor
[..., K, d]
n_queries (int): local window size of query.
n_keys (int): local window size of key/value.
attn_bias (torch.Tensor, optional): the input biases for attention. Defaults to None.
[..., Q, K]
trunked_attn_bias (torch.Tensor, optional): the input biases where shape has been rearranged to dense trunks. Defaults to None.
[..., n_trunks, n_queries, n_keys]
inf (float): inf number used for attention bias. Defaults to 1e10.
use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False.
attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0.
Returns:
torch.Tensor: standard attention output
[..., Q, d]
"""
assert q.shape == k.shape == v.shape # local attention doesn't make sense if Q != K
# Prepare for attention qkv, q: [..., n_trunks, n_queries, d], kv: [..., n_trunks, n_keys, d]
# Rerrange to dense trunks
# q: [*, n, d] -> [*, n_trunks, n_queries, d]
# kv: [*, n, d] -> [*, n_trunks, n_keys, d]
# attn_bias: [*, n, d] -> [*, n_trunks, n_queries, n_keys]
q_trunked, k_trunked, v_trunked, attn_bias_trunked, q_pad_length = (
rearrange_to_dense_trunk(
q=q,
k=k,
v=v,
n_queries=n_queries,
n_keys=n_keys,
attn_bias=attn_bias,
inf=inf,
)
)
# Apply attention
# [..., n_trunks, n_queries, d]
if trunked_attn_bias is not None:
attn_bias_trunked = attn_bias_trunked + trunked_attn_bias
if chunk_size is not None:
attn_inputs = {
"q": q_trunked,
"k": k_trunked,
"v": v_trunked,
"attn_bias": attn_bias_trunked,
}
out = chunk_layer(
partial(
_attention,
use_efficient_implementation=use_efficient_implementation,
attn_weight_dropout_p=attn_weight_dropout_p,
inplace_safe=inplace_safe,
),
attn_inputs,
chunk_size=chunk_size,
no_batch_dims=len(attn_bias_trunked.shape[:-2]),
_out=None,
)
else:
out = _attention(
q=q_trunked,
k=k_trunked,
v=v_trunked,
attn_bias=attn_bias_trunked,
use_efficient_implementation=use_efficient_implementation,
attn_weight_dropout_p=attn_weight_dropout_p,
inplace_safe=inplace_safe,
)
# Revert back to orignal shape and remove q_pad_length
# [..., n_trunks, n_queries, d] -> [..., n_trunks * n_queries, d] -> [..., n, d]
out = out.reshape(*out.shape[:-3], -1, out.shape[-1])
if q_pad_length > 0:
out = out[..., :-q_pad_length, :]
return out
def create_local_attn_bias(
n: int, n_queries: int, n_keys: int, inf: float = 1e10, device: torch.device = None
) -> torch.Tensor:
"""Create local attention bias based on query window n_queries and kv window n_keys.
Args:
n (int): the length of quiries
n_queries (int): window size of quiries
n_keys (int): window size of keys/values
inf (float, optional): the inf to mask attention. Defaults to 1e10.
device (torch.device, optional): cuda|cpu|None. Defaults to None.
Returns:
torch.Tensor: the diagonal-like global attention bias
"""
n_trunks = int(math.ceil(n / n_queries))
padded_n = n_trunks * n_queries
attn_mask = torch.zeros(padded_n, padded_n, device=device)
for block_index in range(0, n_trunks):
i = block_index * n_queries
j1 = max(0, n_queries * block_index - (n_keys - n_queries) // 2)
j2 = n_queries * block_index + (n_queries + n_keys) // 2
attn_mask[i : i + n_queries, j1:j2] = 1.0
attn_bias = (1 - attn_mask) * -inf
return attn_bias.to(device=device)[:n, :n]
class Attention(nn.Module):
"""Standard multi-head attention
Ref to openfold:
https://github.com/aqlaboratory/openfold/blob/feb45a521e11af1db241a33d58fb175e207f8ce0/openfold/model/primitives.py#L340
"""
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
num_heads: int,
gating: bool = True,
q_linear_bias: bool = False,
local_attention_method: str = "global_attention_with_bias",
use_efficient_implementation: bool = False,
attn_weight_dropout_p: float = 0.0,
) -> None:
"""
Args:
c_q (int): Input dimension of query data
c_k (int): Input dimension of key data
c_v (int): Input dimension of value data
c_hidden (int): Per-head hidden dimension
num_heads (int): Number of attention heads
gating (bool, optional): Whether the output should be gated using query data. Defaults to True.
q_linear_bias (bool, optional): whether use Linear with bias as in AF3. Defaults to False.
local_attention_method (str, optional): local attention method, options:
- global_attention_with_bias: use full size global attention with sparse attention bias
- local_cross_attention: use local cross attention to minimize computation
use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False.
attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0.
Notes:
if use_efficient_implementation == True, torch.nn.functional.scaled_dot_product_attention will
be used to compute attention efficiently
There are currently three supported implementations of scaled dot product attention:
1. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
2. Memory-Efficient Attention
3. A PyTorch implementation defined in C++ matching the above formulation
The function may call optimized kernels for improved performance when using the CUDA backend.
For all other backends, the PyTorch implementation will be used.All implementations are enabled by default.
Scaled dot product attention attempts to automatically select the most optimal implementation based on the inputs.
"""
super(Attention, self).__init__()
self.c_q = c_q
self.c_k = c_k
self.c_v = c_v
self.c_hidden = c_hidden
self.num_heads = num_heads
self.gating = gating
self.local_attention_method = local_attention_method
self.use_efficient_implementation = use_efficient_implementation
self.attn_weight_dropout_p = attn_weight_dropout_p
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
# stated in the supplement, but the overall channel dimension.
if q_linear_bias:
# Attention in AF3
self.linear_q = Linear(
in_features=self.c_q, out_features=self.c_hidden * self.num_heads
)
else:
# Vanilla attention
self.linear_q = LinearNoBias(self.c_q, self.c_hidden * self.num_heads)
self.linear_k = LinearNoBias(self.c_k, self.c_hidden * self.num_heads)
self.linear_v = LinearNoBias(self.c_v, self.c_hidden * self.num_heads)
self.linear_o = LinearNoBias(self.c_hidden * self.num_heads, self.c_q)
self.linear_g = None
if self.gating:
self.linear_g = LinearNoBias(self.c_q, self.c_hidden * self.num_heads)
self.sigmoid = nn.Sigmoid()
# Zero init the output layer
nn.init.zeros_(self.linear_o.weight)
def _prep_qkv(
self, q_x: torch.Tensor, kv_x: torch.Tensor, apply_scale: bool = True
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Prepare qkv
Args:
q_x (torch.Tensor): the input x for q
[..., c_q]
kv_x (torch.Tensor): the input x for kv
[..., c_k]
[..., c_v]
apply_scale (bool, optional): apply scale to dot product qk. Defaults to True.
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: the return q/k/v
# [..., H, Q/K/V, C_hidden]
"""
# [*, Q/K/V, H * C_hidden]
q = self.linear_q(q_x)
k = self.linear_k(kv_x)
v = self.linear_v(kv_x)
# [*, Q/K/V, H, C_hidden]
q = q.view(q.shape[:-1] + (self.num_heads, -1))
k = k.view(k.shape[:-1] + (self.num_heads, -1))
v = v.view(v.shape[:-1] + (self.num_heads, -1))
# [*, H, Q/K/V, C_hidden]
q = q.transpose(-2, -3)
k = k.transpose(-2, -3)
v = v.transpose(-2, -3)
if apply_scale:
q = q / math.sqrt(self.c_hidden)
return q, k, v
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
"""
Args:
o (torch.Tensor): the output of attention
[..., G/Q, H, C_hidden]
q_x (torch.Tensor): the input for gated g
[..., Q, c_q]
Returns:
torch.Tensor: the output of attention
"""
if self.linear_g is not None:
g = self.sigmoid(self.linear_g(q_x))
# [*, G/Q, H, C_hidden]
g = g.view(g.shape[:-1] + (self.num_heads, -1))
o = o * g
# [*, Q, H * C_hidden]
o = flatten_final_dims(o, num_dims=2)
# [*, Q, C_q]
o = self.linear_o(o)
return o
def forward(
self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
trunked_attn_bias: Optional[torch.Tensor] = None,
n_queries: Optional[int] = None,
n_keys: Optional[int] = None,
inf: Optional[float] = 1e10,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
q_x (torch.Tensor): the input x for q
[..., Q, C_q]
kv_x (torch.Tensor): the input x for k/v
[..., K, C_k]
attn_bias (torch.Tensor, optional): the input biases for attention. Defaults to None.
[..., H, Q, K] or [..., Q, K]
trunked_attn_bias (torch.Tensor, optional): the input biases where shape has been rearranged to dense trunks. Defaults to None.
[..., H, n_trunks, n_queries, n_keys] or [..., n_trunks, n_queries, n_keys]
n_queries (int, optional): local window size of query tensor. If not None, will perform local attention. Defaults to None.
n_keys (int, optional): local window size of key tensor. Defaults to None.
Returns:
torch.Tensor: attention update
[*, Q, C_q]
"""
q, k, v = self._prep_qkv(q_x=q_x, kv_x=kv_x, apply_scale=True)
if attn_bias is not None:
if len(attn_bias.shape) == len(q.shape):
assert attn_bias.shape[:-2] == q.shape[:-2]
else:
assert len(attn_bias.shape) == len(q.shape) - 1
assert attn_bias.shape[:-2] == q.shape[:-3]
# Expand at head dim, got shape [..., 1, Q, K]
attn_bias = attn_bias.unsqueeze(dim=-3)
if trunked_attn_bias is not None:
# NOTE: trunked_attn_bias can only be used with "local_cross_attention" method
assert n_queries and n_keys
assert self.local_attention_method == "local_cross_attention"
if len(trunked_attn_bias.shape) == len(q.shape) + 1:
assert trunked_attn_bias.shape[:-3] == q.shape[:-2]
else:
assert len(trunked_attn_bias.shape) == len(q.shape)
# Expand at head dim, got shape [..., 1, n_trunks, n_queries, n_keys]
trunked_attn_bias = trunked_attn_bias.unsqueeze(dim=-4)
if n_queries and n_keys:
if self.local_attention_method == "global_attention_with_bias":
local_attn_bias = create_local_attn_bias(
q.shape[-2], n_queries, n_keys, inf=inf, device=q.device
)
# Expand to same shape as attn_bias
local_attn_bias = local_attn_bias.reshape(
(1,) * (len(q.shape[:-2])) + local_attn_bias.shape
)
if attn_bias is not None:
if inplace_safe:
local_attn_bias += attn_bias
else:
local_attn_bias = local_attn_bias + attn_bias
o = _attention(
q=q,
k=k,
v=v,
attn_bias=local_attn_bias,
use_efficient_implementation=self.use_efficient_implementation,
attn_weight_dropout_p=self.attn_weight_dropout_p,
inplace_safe=inplace_safe,
)
elif self.local_attention_method == "local_cross_attention":
o = _local_attention(
q=q,
k=k,
v=v,
n_queries=n_queries,
n_keys=n_keys,
attn_bias=attn_bias,
trunked_attn_bias=trunked_attn_bias,
inf=inf,
use_efficient_implementation=self.use_efficient_implementation,
attn_weight_dropout_p=self.attn_weight_dropout_p,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
else:
raise ValueError(
f"Invalid local attention method: {self.local_attention_method}"
)
else:
o = _attention(
q=q,
k=k,
v=v,
attn_bias=attn_bias,
use_efficient_implementation=self.use_efficient_implementation,
attn_weight_dropout_p=self.attn_weight_dropout_p,
inplace_safe=inplace_safe,
) # [*, H, Q, C_hidden]
o = o.transpose(-2, -3) # o: [*, Q, H, C_hidden]
o = self._wrap_up(o, q_x) # q_x: [*, Q, c_q]
return o
def gather_pair_embedding_in_dense_trunk(
x: torch.Tensor, idx_q: torch.Tensor, idx_k: torch.Tensor
):
"""
Selectively gather elements from a tensor using two sets of indices.
x: [..., N_token, N_token, d]
idx_q: [N_b, N_q]
idx_k: [N_b, N_k]
Return:
y: [..., N_b, N_q, N_k, d]
where y[..., b, i, j, :] = x[..., idx_q[b, i], idx_k[b, j], :]
"""
idx_q = idx_q.long()
idx_k = idx_k.long()
assert len(idx_q.shape) == len(idx_k.shape) == 2
# Get the shape parameters
N_b, N_q = idx_q.shape
N_k = idx_k.shape[1]
# Expand idx_q and idx_k to match the shape required for advanced indexing
idx_q_expanded = idx_q.unsqueeze(-1).expand(-1, -1, N_k)
idx_k_expanded = idx_k.unsqueeze(1).expand(-1, N_q, -1)
# Use advanced indexing to gather the desired elements
y = x[..., idx_q_expanded, idx_k_expanded, :]
return y
def broadcast_token_to_local_atom_pair(
z_token: torch.Tensor,
atom_to_token_idx: torch.Tensor,
n_queries: int,
n_keys: int,
compute_mask: bool = True,
) -> torch.Tensor:
"""Broadcast token pair embedding to atom pair embedding
Args:
z_token (torch.Tensor): token pair embedding
[..., N_token, N_token, d]
atom_to_token_idx (torch.Tensor): map atom idx to token idx
[N_atom]
Returns:
z_gathered_blocked (torch.Tensor): atom pair embedding, with local blocked shape
[..., n_trunks, n_queries, n_keys, d]
pad_mask (torch.Tensor):
[n_trunks, n_queries, n_keys]
q_pad_length (int)
"""
# [N_atom] -> [n_trunks, n_queries] and [n_trunks, n_keys]
atom_to_token_idx_q, atom_to_token_idx_k, pad_info = rearrange_qk_to_dense_trunk(
atom_to_token_idx,
atom_to_token_idx,
dim_q=-1,
dim_k=-1,
n_queries=n_queries,
n_keys=n_keys,
compute_mask=compute_mask,
)
z_gathered_blocked = gather_pair_embedding_in_dense_trunk(
z_token, idx_q=atom_to_token_idx_q, idx_k=atom_to_token_idx_k
)
return z_gathered_blocked, pad_info
|