File size: 35,026 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from protenix.model.modules.primitives import (
AdaptiveLayerNorm,
Attention,
BiasInitLinear,
LinearNoBias,
broadcast_token_to_local_atom_pair,
rearrange_qk_to_dense_trunk,
)
from protenix.model.utils import (
aggregate_atom_to_token,
broadcast_token_to_atom,
permute_final_dims,
)
from protenix.openfold_local.model.primitives import LayerNorm
from protenix.openfold_local.utils.checkpointing import checkpoint_blocks
class AttentionPairBias(nn.Module):
"""
Implements Algorithm 24 in AF3
"""
def __init__(
self,
has_s: bool = True,
n_heads: int = 16,
c_a: int = 768,
c_s: int = 384,
c_z: int = 128,
biasinit: float = -2.0,
) -> None:
"""
Args:
has_s (bool, optional): whether s is None as stated in Algorithm 24 Line1. Defaults to True.
n_heads (int, optional): number of attention-like head in AttentionPairBias. Defaults to 16.
c_a (int, optional): the embedding dim of a(single feature aggregated atom info). Defaults to 768.
c_s (int, optional): hidden dim [for single embedding]. Defaults to 384.
c_z (int, optional): hidden dim [for pair embedding]. Defaults to 128.
biasinit (float, optional): biasinit for BiasInitLinear. Defaults to -2.0.
"""
super(AttentionPairBias, self).__init__()
assert c_a % n_heads == 0
self.n_heads = n_heads
self.has_s = has_s
if has_s:
# Line2
self.layernorm_a = AdaptiveLayerNorm(c_a=c_a, c_s=c_s)
# Line 13
self.linear_a_last = BiasInitLinear(
in_features=c_s, out_features=c_a, bias=True, biasinit=biasinit
)
else:
self.layernorm_a = LayerNorm(c_a)
# Line 6-11
self.local_attention_method = "local_cross_attention"
self.attention = Attention(
c_q=c_a,
c_k=c_a,
c_v=c_a,
c_hidden=c_a // n_heads,
num_heads=n_heads,
gating=True,
q_linear_bias=True,
local_attention_method=self.local_attention_method,
)
self.layernorm_z = LayerNorm(c_z)
# Alg24. Line8 is scalar, but this is different for different heads
self.linear_nobias_z = LinearNoBias(in_features=c_z, out_features=n_heads)
def glorot_init(self):
nn.init.xavier_uniform_(self.attention.linear_q.weight)
nn.init.xavier_uniform_(self.attention.linear_k.weight)
nn.init.xavier_uniform_(self.attention.linear_v.weight)
nn.init.zeros_(self.attention.linear_q.bias)
def local_multihead_attention(
self,
a: torch.Tensor,
s: torch.Tensor,
z: torch.Tensor,
n_queries: int = 32,
n_keys: int = 128,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""Used by Algorithm 24, with beta_ij being the local mask. Used in AtomTransformer.
Args:
a (torch.Tensor): atom embedding
[..., N_atom, c_a]
s (torch.Tensor): atom embedding
[..., N_atom, c_s]
z (torch.Tensor): atom-atom pair embedding, in trunked dense shape. Used for computing pair bias.
[..., n_blocks, n_queries, n_keys, c_z]
n_queries (int, optional): local window size of query tensor. Defaults to 32.
n_keys (int, optional): local window size of key tensor. Defaults to 128.
inplace_safe (bool): Whether it is safe to use inplace operations. Defaults to False.
chunk_size (Optional[int]): Chunk size for memory-efficient operations. Defaults to None.
Returns:
torch.Tensor: the updated a from AttentionPairBias
[..., N_atom, c_a]
"""
assert n_queries == z.size(-3)
assert n_keys == z.size(-2)
assert len(z.shape) == len(a.shape) + 2
# Multi-head attention bias
bias = self.linear_nobias_z(
self.layernorm_z(z)
) # [..., n_blocks, n_queries, n_keys, n_heads]
bias = permute_final_dims(
bias, [3, 0, 1, 2]
) # [..., n_heads, n_blocks, n_queries, n_keys]
# Line 11: Multi-head attention with attention bias & gating (and optionally local attention)
a = self.attention(
q_x=a,
kv_x=a,
trunked_attn_bias=bias,
n_queries=n_queries,
n_keys=n_keys,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
return a
def standard_multihead_attention(
self,
a: torch.Tensor,
s: torch.Tensor,
z: torch.Tensor,
inplace_safe: bool = False,
) -> torch.Tensor:
"""Used by Algorithm 7/20
Args:
a (torch.Tensor): the single feature aggregate per-atom representation
[..., N_token, c_a]
s (torch.Tensor): single embedding
[..., N_token, c_s]
z (torch.Tensor): pair embedding, used for computing pair bias.
[..., N_token, N_token, c_z]
inplace_safe (bool): Whether it is safe to use inplace operations. Defaults to False.
Returns:
torch.Tensor: the updated a from AttentionPairBias
[..., N_token, c_a]
"""
# Multi-head attention bias
bias = self.linear_nobias_z(self.layernorm_z(z))
bias = permute_final_dims(bias, [2, 0, 1]) # [..., n_heads, N_token, N_token]
# Line 11: Multi-head attention with attention bias & gating (and optionally local attention)
a = self.attention(q_x=a, kv_x=a, attn_bias=bias, inplace_safe=inplace_safe)
return a
def forward(
self,
a: torch.Tensor,
s: torch.Tensor,
z: torch.Tensor,
n_queries: Optional[int] = None,
n_keys: Optional[int] = None,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""Details are given in local_forward and standard_forward"""
# Input projections
if self.has_s:
a = self.layernorm_a(a=a, s=s)
else:
a = self.layernorm_a(a)
# Multihead attention with pair bias
if n_queries and n_keys:
a = self.local_multihead_attention(
a,
s,
z,
n_queries,
n_keys,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
else:
a = self.standard_multihead_attention(a, s, z, inplace_safe=inplace_safe)
# Output projection (from adaLN-Zero [27])
if self.has_s:
if inplace_safe:
a *= torch.sigmoid(self.linear_a_last(s))
else:
a = torch.sigmoid(self.linear_a_last(s)) * a
return a
class DiffusionTransformerBlock(nn.Module):
"""
Implements Algorithm 23[Line2-Line3] in AF3
"""
def __init__(
self,
c_a: int, # could be 128 or 768 in AF3
c_s: int, # could be c_s or c_atom
c_z: int, # could be c_z or c_atompair
n_heads: int, # could be 16 or 4 or ... in AF3
biasinit: float = -2.0,
) -> None:
"""
Args:
c_a (int, optional): single embedding dimension.
c_s (int, optional): single embedding dimension.
c_z (int, optional): pair embedding dimension.
n_heads (int, optional): number of heads for DiffusionTransformerBlock.
"""
super(DiffusionTransformerBlock, self).__init__()
self.n_heads = n_heads
self.c_a = c_a
self.c_s = c_s
self.c_z = c_z
self.attention_pair_bias = AttentionPairBias(
has_s=True, n_heads=n_heads, c_a=c_a, c_s=c_s, c_z=c_z, biasinit=biasinit
)
self.conditioned_transition_block = ConditionedTransitionBlock(
n=2, c_a=c_a, c_s=c_s, biasinit=biasinit
)
def forward(
self,
a: torch.Tensor,
s: torch.Tensor,
z: torch.Tensor,
n_queries: Optional[int] = None,
n_keys: Optional[int] = None,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
a (torch.Tensor): the single feature aggregate per-atom representation
[..., N, c_a]
s (torch.Tensor): single embedding
[..., N, c_s]
z (torch.Tensor): pair embedding
[..., N, N, c_z] or [..., n_block, n_queries, n_keys, c_z]
n_queries (int, optional): local window size of query tensor. If not None, will perform local attention. Defaults to None.
n_keys (int, optional): local window size of key tensor. Defaults to None.
inplace_safe (bool): Whether it is safe to use inplace operations. Defaults to False.
chunk_size (Optional[int]): Chunk size for memory-efficient operations. Defaults to None.
Returns:
torch.Tensor: the output of DiffusionTransformerBlock
[..., N, c_a]
"""
attn_out = self.attention_pair_bias(
a=a,
s=s,
z=z,
n_queries=n_queries,
n_keys=n_keys,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
if inplace_safe:
attn_out += a
else:
attn_out = attn_out + a
ff_out = self.conditioned_transition_block(a=attn_out, s=s)
out_a = ff_out + attn_out
# Avoid s/z to be deleted by torch.utils.checkpoint
return out_a, s, z
class DiffusionTransformer(nn.Module):
"""
Implements Algorithm 23 in AF3
"""
def __init__(
self,
c_a: int, # could be 128 or 768 in AF3
c_s: int, # could be c_s or c_atom
c_z: int, # could be c_z or c_atompair
n_blocks: int, # could be 3 or 24 in AF3
n_heads: int, # could be 16 or 4 or ... in AF3
blocks_per_ckpt: Optional[int] = None,
) -> None:
"""
Args:
c_a (int): single embedding dimension.
c_s (int): single embedding dimension.
c_z (int): pair embedding dimension.
n_blocks (int): number of blocks in DiffusionTransformer.
n_heads (int): number of heads in attention.
blocks_per_ckpt: number of DiffusionTransformer blocks in each activation checkpoint
"""
super(DiffusionTransformer, self).__init__()
self.n_blocks = n_blocks
self.n_heads = n_heads
self.c_a = c_a
self.c_s = c_s
self.c_z = c_z
self.blocks_per_ckpt = blocks_per_ckpt
self.blocks = nn.ModuleList()
for _ in range(n_blocks):
block = DiffusionTransformerBlock(
n_heads=n_heads, c_a=c_a, c_s=c_s, c_z=c_z
)
self.blocks.append(block)
def _prep_blocks(
self,
n_queries: Optional[int] = None,
n_keys: Optional[int] = None,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
clear_cache_between_blocks: bool = False,
):
blocks = [
partial(
b,
n_queries=n_queries,
n_keys=n_keys,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
for b in self.blocks
]
def clear_cache(b, *args, **kwargs):
# torch.cuda.empty_cache()
return b(*args, **kwargs)
if clear_cache_between_blocks:
blocks = [partial(clear_cache, b) for b in blocks]
return blocks
def forward(
self,
a: torch.Tensor,
s: torch.Tensor,
z: torch.Tensor,
n_queries: Optional[int] = None,
n_keys: Optional[int] = None,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
a (torch.Tensor): the single feature aggregate per-atom representation
[..., N, c_a]
s (torch.Tensor): single embedding
[..., N, c_s]
z (torch.Tensor): pair embedding
[..., N, N, c_z]
n_queries (int, optional): local window size of query tensor. If not None, will perform local attention. Defaults to None.
n_keys (int, optional): local window size of key tensor. Defaults to None.
Returns:
torch.Tensor: the output of DiffusionTransformer
[..., N, c_a]
"""
if z.shape[-2] > 2000 and (not self.training):
clear_cache_between_blocks = True
else:
clear_cache_between_blocks = False
blocks = self._prep_blocks(
n_queries=n_queries,
n_keys=n_keys,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
clear_cache_between_blocks=clear_cache_between_blocks,
)
blocks_per_ckpt = self.blocks_per_ckpt
if not torch.is_grad_enabled():
blocks_per_ckpt = None
a, s, z = checkpoint_blocks(
blocks, args=(a, s, z), blocks_per_ckpt=blocks_per_ckpt
)
del s, z
return a
class AtomTransformer(nn.Module):
"""
Implements Algorithm 7 in AF3
"""
def __init__(
self,
c_atom: int = 128,
c_atompair: int = 16,
n_blocks: int = 3,
n_heads: int = 4,
n_queries: int = 32,
n_keys: int = 128,
blocks_per_ckpt: Optional[int] = None,
) -> None:
"""Performs local transformer among atom embeddings, with bias predicted from atom pair embeddings
Args:
c_atom int: embedding dim for atom feature. Defaults to 128.
c_atompair int: embedding dim for atompair feature. Defaults to 16.
n_blocks (int, optional): number of block in AtomTransformer. Defaults to 3.
n_heads (int, optional): nubmer of heads in attention. Defaults to 4.
n_queries (int, optional): local window size of query tensor. If not None, will perform local attention. Defaults to 32.
n_keys (int, optional): local window size of key tensor. Defaults to 128.
blocks_per_ckpt: number of AtomTransformer/DiffusionTransformer blocks in each activation checkpoint
Size of each chunk. A higher value corresponds to fewer
checkpoints, and trades memory for speed. If None, no checkpointing
is performed.
"""
super(AtomTransformer, self).__init__()
self.n_blocks = n_blocks
self.n_heads = n_heads
self.n_queries = n_queries
self.n_keys = n_keys
self.c_atom = c_atom
self.c_atompair = c_atompair
self.diffusion_transformer = DiffusionTransformer(
n_blocks=n_blocks,
n_heads=n_heads,
c_a=c_atom,
c_s=c_atom,
c_z=c_atompair,
blocks_per_ckpt=blocks_per_ckpt,
)
def forward(
self,
q: torch.Tensor,
c: torch.Tensor,
p: torch.Tensor,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
q (torch.Tensor): atom single embedding
[..., N_atom, c_atom]
c (torch.Tensor): atom single embedding
[..., N_atom, c_atom]
p (torch.Tensor): atompair embedding in dense block shape.
[..., n_blocks, n_queries, n_keys, c_atompair]
Returns:
torch.Tensor: the output of AtomTransformer
[..., N_atom, c_atom]
"""
n_blocks, n_queries, n_keys = p.shape[-4:-1]
assert n_queries == self.n_queries
assert n_keys == self.n_keys
return self.diffusion_transformer(
a=q,
s=c,
z=p,
n_queries=self.n_queries,
n_keys=self.n_keys,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
class ConditionedTransitionBlock(nn.Module):
"""
Implements Algorithm 25 in AF3
"""
def __init__(self, c_a: int, c_s: int, n: int = 2, biasinit: float = -2.0) -> None:
"""
Args:
c_a (int, optional): single embedding dim (single feature aggregated atom info).
c_s (int, optional): single embedding dim.
n (int, optional): channel scale factor. Defaults to 2.
"""
super(ConditionedTransitionBlock, self).__init__()
self.c_a = c_a
self.c_s = c_s
self.n = n
self.adaln = AdaptiveLayerNorm(c_a=c_a, c_s=c_s)
self.linear_nobias_a1 = LinearNoBias(in_features=c_a, out_features=n * c_a)
self.linear_nobias_a2 = LinearNoBias(in_features=c_a, out_features=n * c_a)
self.linear_nobias_b = LinearNoBias(in_features=n * c_a, out_features=c_a)
self.linear_s = BiasInitLinear(
in_features=c_s, out_features=c_a, bias=True, biasinit=biasinit
)
def forward(self, a: torch.Tensor, s: torch.Tensor) -> torch.Tensor:
"""
Args:
a (torch.Tensor): the single feature aggregate per-atom representation
[..., N, c_a]
s (torch.Tensor): single embedding
[..., N, c_s]
Returns:
torch.Tensor: the updated a from ConditionedTransitionBlock
[..., N, c_a]
"""
a = self.adaln(a, s)
b = F.silu((self.linear_nobias_a1(a))) * self.linear_nobias_a2(a)
# Output projection (from adaLN-Zero [27])
a = torch.sigmoid(self.linear_s(s)) * self.linear_nobias_b(b)
return a
class AtomAttentionEncoder(nn.Module):
"""
Implements Algorithm 5 in AF3
"""
def __init__(
self,
has_coords: bool,
c_token: int, # 384 or 768
c_atom: int = 128,
c_atompair: int = 16,
c_s: int = 384,
c_z: int = 128,
n_blocks: int = 3,
n_heads: int = 4,
n_queries: int = 32,
n_keys: int = 128,
blocks_per_ckpt: Optional[int] = None,
) -> None:
"""
Args:
has_coords (bool): whether the module input will contains coordinates (r_l).
c_token (int): token embedding dim.
c_atom (int, optional): atom embedding dim. Defaults to 128.
c_atompair (int, optional): atompair embedding dim. Defaults to 16.
c_s (int, optional): single embedding dim. Defaults to 384.
c_z (int, optional): pair embedding dim. Defaults to 128.
n_blocks (int, optional): number of blocks in AtomTransformer. Defaults to 3.
n_heads (int, optionall): number of heads in AtomTransformer. Defaults to 4.
blocks_per_ckpt: number of AtomAttentionEncoder/AtomTransformer blocks in each activation checkpoint
Size of each chunk. A higher value corresponds to fewer
checkpoints, and trades memory for speed. If None, no checkpointing
is performed.
"""
super(AtomAttentionEncoder, self).__init__()
self.has_coords = has_coords
self.c_atom = c_atom
self.c_atompair = c_atompair
self.c_token = c_token
self.c_s = c_s
self.c_z = c_z
self.n_queries = n_queries
self.n_keys = n_keys
self.local_attention_method = "local_cross_attention"
self.input_feature = {
"ref_pos": 3,
"ref_charge": 1,
"ref_mask": 1,
"ref_element": 128,
"ref_atom_name_chars": 4 * 64,
}
self.linear_no_bias_f = LinearNoBias(
in_features=sum(self.input_feature.values()), out_features=self.c_atom
)
self.linear_no_bias_d = LinearNoBias(
in_features=3, out_features=self.c_atompair
)
self.linear_no_bias_invd = LinearNoBias(
in_features=1, out_features=self.c_atompair
)
self.linear_no_bias_v = LinearNoBias(
in_features=1, out_features=self.c_atompair
)
if self.has_coords:
# Line9
self.layernorm_s = LayerNorm(self.c_s)
self.linear_no_bias_s = LinearNoBias(
in_features=self.c_s, out_features=self.c_atom
)
# Line10
self.layernorm_z = LayerNorm(self.c_z) # memory bottleneck
self.linear_no_bias_z = LinearNoBias(
in_features=self.c_z, out_features=self.c_atompair
)
# Line11
self.linear_no_bias_r = LinearNoBias(
in_features=3, out_features=self.c_atom
)
self.linear_no_bias_cl = LinearNoBias(
in_features=self.c_atom, out_features=self.c_atompair
)
self.linear_no_bias_cm = LinearNoBias(
in_features=self.c_atom, out_features=self.c_atompair
)
self.small_mlp = nn.Sequential(
nn.ReLU(),
LinearNoBias(in_features=self.c_atompair, out_features=self.c_atompair),
nn.ReLU(),
LinearNoBias(in_features=self.c_atompair, out_features=self.c_atompair),
nn.ReLU(),
LinearNoBias(in_features=self.c_atompair, out_features=self.c_atompair),
)
self.atom_transformer = AtomTransformer(
n_blocks=n_blocks,
n_heads=n_heads,
c_atom=c_atom,
c_atompair=c_atompair,
n_queries=n_queries,
n_keys=n_keys,
blocks_per_ckpt=blocks_per_ckpt,
)
self.linear_no_bias_q = LinearNoBias(
in_features=self.c_atom, out_features=self.c_token
)
def linear_init(
self,
zero_init_atom_encoder_residual_linear: bool = False,
he_normal_init_atom_encoder_small_mlp: bool = False,
he_normal_init_atom_encoder_output: bool = False,
):
"""
Initializes the parameters of the diffusion module according to the provided initialization configuration.
Args:
zero_init_atom_encoder_residual_linear (bool): Whether to zero-initialize the residual linear layers.
he_normal_init_atom_encoder_small_mlp (bool): Whether to initialize the small MLP layers with He normal initialization.
he_normal_init_atom_encoder_output (bool): Whether to initialize the output layer with He normal initialization.
"""
if zero_init_atom_encoder_residual_linear:
nn.init.zeros_(self.linear_no_bias_invd.weight)
nn.init.zeros_(self.linear_no_bias_v.weight)
nn.init.zeros_(self.linear_no_bias_s.weight)
nn.init.zeros_(self.linear_no_bias_z.weight)
nn.init.zeros_(self.linear_no_bias_r.weight)
nn.init.zeros_(self.linear_no_bias_cl.weight)
nn.init.zeros_(self.linear_no_bias_cm.weight)
if he_normal_init_atom_encoder_small_mlp:
for layer in self.small_mlp:
if not isinstance(layer, torch.nn.modules.activation.ReLU):
nn.init.kaiming_normal_(
layer.weight,
a=0,
mode="fan_in",
nonlinearity="relu",
)
if he_normal_init_atom_encoder_output:
nn.init.kaiming_normal_(
self.linear_no_bias_q.weight, a=0, mode="fan_in", nonlinearity="relu"
)
def forward(
self,
input_feature_dict: dict[str, Union[torch.Tensor, int, float, dict]],
r_l: torch.Tensor = None,
s: torch.Tensor = None,
z: torch.Tensor = None,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Args:
input_feature_dict (dict[str, Union[torch.Tensor, int, float, dict]]): input meta feature dict
r_l (torch.Tensor, optional): noisy position.
[..., N_sample, N_atom, 3] if has_coords else None.
s (torch.Tensor, optional): single embedding.
[..., N_sample, N_token, c_s] if has_coords else None.
z (torch.Tensor, optional): pair embedding
[..., N_sample, N_token, N_token, c_z] if has_coords else None.
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: the output of AtomAttentionEncoder
a:
[..., (N_sample), N_token, c_token]
q_l:
[..., (N_sample), N_atom, c_atom]
c_l:
[..., (N_sample), N_atom, c_atom]
p_lm:
[..., (N_sample), N_atom, N_atom, c_atompair]
"""
if self.has_coords:
assert r_l is not None
assert s is not None
assert z is not None
atom_to_token_idx = input_feature_dict["atom_to_token_idx"]
# Create the atom single conditioning: Embed per-atom meta data
# [..., N_atom, C_atom]
batch_shape = input_feature_dict["ref_pos"].shape[:-2]
N_atom = input_feature_dict["ref_pos"].shape[-2]
c_l = self.linear_no_bias_f(
torch.cat(
[
input_feature_dict[name].reshape(
*batch_shape, N_atom, self.input_feature[name]
)
for name in self.input_feature
],
dim=-1,
)
)
# Line2-Line4: Embed offsets between atom reference positions
# Prepare tensors in dense trunks for local operations
q_trunked_list, k_trunked_list, pad_info = rearrange_qk_to_dense_trunk(
q=[input_feature_dict["ref_pos"], input_feature_dict["ref_space_uid"]],
k=[input_feature_dict["ref_pos"], input_feature_dict["ref_space_uid"]],
dim_q=[-2, -1],
dim_k=[-2, -1],
n_queries=self.n_queries,
n_keys=self.n_keys,
compute_mask=True,
)
# Compute atom pair feature
d_lm = (
q_trunked_list[0][..., None, :] - k_trunked_list[0][..., None, :, :]
) # [..., n_blocks, n_queries, n_keys, 3]
v_lm = (
q_trunked_list[1][..., None].int() == k_trunked_list[1][..., None, :].int()
).unsqueeze(
dim=-1
) # [..., n_blocks, n_queries, n_keys, 1]
p_lm = (self.linear_no_bias_d(d_lm) * v_lm) * pad_info[
"mask_trunked"
].unsqueeze(
dim=-1
) # [..., n_blocks, n_queries, n_keys, C_atompair]
# Line5-Line6: Embed pairwise inverse squared distances, and the valid mask
if inplace_safe:
p_lm += (
self.linear_no_bias_invd(1 / (1 + (d_lm**2).sum(dim=-1, keepdim=True)))
* v_lm
)
p_lm += self.linear_no_bias_v(v_lm.to(dtype=p_lm.dtype)) * v_lm
else:
p_lm = (
p_lm
+ self.linear_no_bias_invd(
1 / (1 + (d_lm**2).sum(dim=-1, keepdim=True))
)
* v_lm
)
p_lm = p_lm + self.linear_no_bias_v(v_lm.to(dtype=p_lm.dtype)) * v_lm
# Line7: Initialise the atom single representation as the single conditioning
q_l = c_l.clone()
# If provided, add trunk embeddings and noisy positions
n_token = None
if r_l is not None:
N_sample = r_l.size(-3)
# Broadcast the single and pair embedding from the trunk
n_token = s.size(-2)
c_l = c_l.unsqueeze(dim=-3) + self.linear_no_bias_s(
self.layernorm_s(
broadcast_token_to_atom(
x_token=s, atom_to_token_idx=atom_to_token_idx
)
)
) # [..., N_sample, N_atom, c_atom]
z_local_pairs, _ = broadcast_token_to_local_atom_pair(
z_token=z,
atom_to_token_idx=atom_to_token_idx,
n_queries=self.n_queries,
n_keys=self.n_keys,
compute_mask=False,
) # [..., N_sample, n_blocks, n_queries, n_keys, c_z]
p_lm = p_lm.unsqueeze(dim=-5) + self.linear_no_bias_z(
self.layernorm_z(z_local_pairs)
) # [..., N_sample, n_blocks, n_queries, n_keys, c_atompair]
# Add the noisy positions
q_l = q_l.unsqueeze(dim=-3) + self.linear_no_bias_r(
r_l
) # [..., N_sample, N_atom, c_atom]
# Add the combined single conditioning to the pair representation
c_l_q, c_l_k, _ = rearrange_qk_to_dense_trunk(
q=c_l,
k=c_l,
dim_q=-2,
dim_k=-2,
n_queries=self.n_queries,
n_keys=self.n_keys,
compute_mask=False,
)
if inplace_safe:
p_lm += self.linear_no_bias_cl(F.relu(c_l_q[..., None, :]))
p_lm += self.linear_no_bias_cm(F.relu(c_l_k[..., None, :, :]))
p_lm += self.small_mlp(p_lm)
else:
p_lm = (
p_lm
+ self.linear_no_bias_cl(F.relu(c_l_q[..., None, :]))
+ self.linear_no_bias_cm(F.relu(c_l_k[..., None, :, :]))
) # [..., (N_sample), n_blocks, n_queries, n_keys, c_atompair]
# Run a small MLP on the pair activations
p_lm = p_lm + self.small_mlp(p_lm)
# Cross attention transformer
q_l = self.atom_transformer(
q_l, c_l, p_lm, chunk_size=chunk_size
) # [..., (N_sample), N_atom, c_atom]
# Aggregate per-atom representation to per-token representation
a = aggregate_atom_to_token(
x_atom=F.relu(self.linear_no_bias_q(q_l)),
atom_to_token_idx=atom_to_token_idx,
n_token=n_token,
reduce="mean",
) # [..., (N_sample), N_token, c_token]
if (not self.training) and (a.shape[-2] > 2000 or q_l.shape[-2] > 20000):
torch.cuda.empty_cache()
return a, q_l, c_l, p_lm
class AtomAttentionDecoder(nn.Module):
"""
Implements Algorithm 6 in AF3
"""
def __init__(
self,
n_blocks: int = 3,
n_heads: int = 4,
c_token: int = 384,
c_atom: int = 128,
c_atompair: int = 16,
n_queries: int = 32,
n_keys: int = 128,
blocks_per_ckpt: Optional[int] = None,
) -> None:
"""
Args:
n_blocks (int, optional): number of blocks for AtomTransformer. Defaults to 3.
n_heads (int, optional): number of heads for AtomTransformer. Defaults to 4.
c_token (int, optional): feature channel of token (single a). Defaults to 384.
c_atom (int, optional): embedding dim for atom embedding. Defaults to 128.
c_atompair (int, optional): embedding dim for atom pair embedding.
blocks_per_ckpt: number of AtomAttentionDecoder/AtomTransformer blocks in each activation checkpoint
Size of each chunk. A higher value corresponds to fewer
checkpoints, and trades memory for speed. If None, no checkpointing
is performed.
"""
super(AtomAttentionDecoder, self).__init__()
self.n_blocks = n_blocks
self.n_heads = n_heads
self.c_token = c_token
self.c_atom = c_atom
self.c_atompair = c_atompair
self.n_queries = n_queries
self.n_keys = n_keys
self.linear_no_bias_a = LinearNoBias(in_features=c_token, out_features=c_atom)
self.layernorm_q = LayerNorm(c_atom)
self.linear_no_bias_out = LinearNoBias(in_features=c_atom, out_features=3)
self.atom_transformer = AtomTransformer(
n_blocks=n_blocks,
n_heads=n_heads,
c_atom=c_atom,
c_atompair=c_atompair,
n_queries=n_queries,
n_keys=n_keys,
blocks_per_ckpt=blocks_per_ckpt,
)
def forward(
self,
input_feature_dict: dict[str, Union[torch.Tensor, int, float, dict]],
a: torch.Tensor,
q_skip: torch.Tensor,
c_skip: torch.Tensor,
p_skip: torch.Tensor,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> torch.Tensor:
"""
Args:
input_feature_dict (dict[str, Union[torch.Tensor, int, float, dict]]): input meta feature dict
a (torch.Tensor): the single feature aggregate per-atom representation
[..., N_token, c_token]
q_skip (torch.Tensor): atom single embedding
[..., N_atom, c_atom]
c_skip (torch.Tensor): atom single embedding
[..., N_atom, c_atom]
p_skip (torch.Tensor): atompair single embedding
[..., n_blocks, n_queries, n_keys, c_atompair]
Returns:
torch.Tensor: the updated nosiy coordinates
[..., N_atom, 3]
"""
# Broadcast per-token activiations to per-atom activations and add the skip connection
q = (
self.linear_no_bias_a(
broadcast_token_to_atom(
x_token=a, atom_to_token_idx=input_feature_dict["atom_to_token_idx"]
) # [..., N_atom, c_token]
) # [..., N_atom, c_atom]
+ q_skip
)
# Cross attention transformer
q = self.atom_transformer(
q, c_skip, p_skip, inplace_safe=inplace_safe, chunk_size=chunk_size
)
# Map to positions update
r = self.linear_no_bias_out(self.layernorm_q(q))
return r
|