File size: 29,512 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from typing import Any, Optional
import numpy as np
import torch
import torch.nn as nn
from protenix.model import sample_confidence
from protenix.model.generator import (
InferenceNoiseScheduler,
TrainingNoiseSampler,
sample_diffusion,
sample_diffusion_training,
)
from protenix.model.utils import simple_merge_dict_list
from protenix.openfold_local.model.primitives import LayerNorm
from protenix.utils.logger import get_logger
from protenix.utils.permutation.permutation import SymmetricPermutation
from protenix.utils.torch_utils import autocasting_disable_decorator
from .modules.confidence import ConfidenceHead
from .modules.diffusion import DiffusionModule
from .modules.embedders import InputFeatureEmbedder, RelativePositionEncoding
from .modules.head import DistogramHead
from .modules.pairformer import MSAModule, PairformerStack, TemplateEmbedder
from .modules.primitives import LinearNoBias
logger = get_logger(__name__)
class Protenix(nn.Module):
"""
Implements Algorithm 1 [Main Inference/Train Loop] in AF3
"""
def __init__(self, configs) -> None:
super(Protenix, self).__init__()
self.configs = configs
# Some constants
self.N_cycle = self.configs.model.N_cycle
self.N_model_seed = self.configs.model.N_model_seed
self.train_confidence_only = configs.train_confidence_only
if self.train_confidence_only: # the final finetune stage
assert configs.loss.weight.alpha_diffusion == 0.0
assert configs.loss.weight.alpha_distogram == 0.0
# Diffusion scheduler
self.train_noise_sampler = TrainingNoiseSampler(**configs.train_noise_sampler)
self.inference_noise_scheduler = InferenceNoiseScheduler(
**configs.inference_noise_scheduler
)
self.diffusion_batch_size = self.configs.diffusion_batch_size
# Model
self.input_embedder = InputFeatureEmbedder(**configs.model.input_embedder)
self.relative_position_encoding = RelativePositionEncoding(
**configs.model.relative_position_encoding
)
self.template_embedder = TemplateEmbedder(**configs.model.template_embedder)
self.msa_module = MSAModule(
**configs.model.msa_module,
msa_configs=configs.data.get("msa", {}),
)
self.pairformer_stack = PairformerStack(**configs.model.pairformer)
self.diffusion_module = DiffusionModule(**configs.model.diffusion_module)
self.distogram_head = DistogramHead(**configs.model.distogram_head)
self.confidence_head = ConfidenceHead(**configs.model.confidence_head)
self.c_s, self.c_z, self.c_s_inputs = (
configs.c_s,
configs.c_z,
configs.c_s_inputs,
)
self.linear_no_bias_sinit = LinearNoBias(
in_features=self.c_s_inputs, out_features=self.c_s
)
self.linear_no_bias_zinit1 = LinearNoBias(
in_features=self.c_s, out_features=self.c_z
)
self.linear_no_bias_zinit2 = LinearNoBias(
in_features=self.c_s, out_features=self.c_z
)
self.linear_no_bias_token_bond = LinearNoBias(
in_features=1, out_features=self.c_z
)
self.linear_no_bias_z_cycle = LinearNoBias(
in_features=self.c_z, out_features=self.c_z
)
self.linear_no_bias_s = LinearNoBias(
in_features=self.c_s, out_features=self.c_s
)
self.layernorm_z_cycle = LayerNorm(self.c_z)
self.layernorm_s = LayerNorm(self.c_s)
# Zero init the recycling layer
nn.init.zeros_(self.linear_no_bias_z_cycle.weight)
nn.init.zeros_(self.linear_no_bias_s.weight)
def get_pairformer_output(
self,
input_feature_dict: dict[str, Any],
N_cycle: int,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> tuple[torch.Tensor, ...]:
"""
The forward pass from the input to pairformer output
Args:
input_feature_dict (dict[str, Any]): input features
N_cycle (int): number of cycles
inplace_safe (bool): Whether it is safe to use inplace operations. Defaults to False.
chunk_size (Optional[int]): Chunk size for memory-efficient operations. Defaults to None.
Returns:
Tuple[torch.Tensor, ...]: s_inputs, s, z
"""
N_token = input_feature_dict["residue_index"].shape[-1]
if N_token <= 16:
# Deepspeed_evo_attention do not support token <= 16
deepspeed_evo_attention_condition_satisfy = False
else:
deepspeed_evo_attention_condition_satisfy = True
if self.train_confidence_only:
self.input_embedder.eval()
self.template_embedder.eval()
self.msa_module.eval()
self.pairformer_stack.eval()
# Line 1-5
s_inputs = self.input_embedder(
input_feature_dict, inplace_safe=False, chunk_size=chunk_size
) # [..., N_token, 449]
s_init = self.linear_no_bias_sinit(s_inputs) # [..., N_token, c_s]
z_init = (
self.linear_no_bias_zinit1(s_init)[..., None, :]
+ self.linear_no_bias_zinit2(s_init)[..., None, :, :]
) # [..., N_token, N_token, c_z]
if inplace_safe:
z_init += self.relative_position_encoding(input_feature_dict)
z_init += self.linear_no_bias_token_bond(
input_feature_dict["token_bonds"].unsqueeze(dim=-1)
)
else:
z_init = z_init + self.relative_position_encoding(input_feature_dict)
z_init = z_init + self.linear_no_bias_token_bond(
input_feature_dict["token_bonds"].unsqueeze(dim=-1)
)
# Line 6
z = torch.zeros_like(z_init)
s = torch.zeros_like(s_init)
# Line 7-13 recycling
for cycle_no in range(N_cycle):
with torch.set_grad_enabled(
self.training
and (not self.train_confidence_only)
and cycle_no == (N_cycle - 1)
):
z = z_init + self.linear_no_bias_z_cycle(self.layernorm_z_cycle(z))
if inplace_safe:
if self.template_embedder.n_blocks > 0:
z += self.template_embedder(
input_feature_dict,
z,
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
z = self.msa_module(
input_feature_dict,
z,
s_inputs,
pair_mask=None,
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
else:
if self.template_embedder.n_blocks > 0:
z = z + self.template_embedder(
input_feature_dict,
z,
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
z = self.msa_module(
input_feature_dict,
z,
s_inputs,
pair_mask=None,
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
s = s_init + self.linear_no_bias_s(self.layernorm_s(s))
s, z = self.pairformer_stack(
s,
z,
pair_mask=None,
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
if self.train_confidence_only:
self.input_embedder.train()
self.template_embedder.train()
self.msa_module.train()
self.pairformer_stack.train()
return s_inputs, s, z
def sample_diffusion(self, **kwargs) -> torch.Tensor:
"""
Samples diffusion process based on the provided configurations.
Returns:
torch.Tensor: The result of the diffusion sampling process.
"""
_configs = {
key: self.configs.sample_diffusion.get(key)
for key in [
"gamma0",
"gamma_min",
"noise_scale_lambda",
"step_scale_eta",
]
}
_configs.update(
{
"attn_chunk_size": (
self.configs.infer_setting.chunk_size if not self.training else None
),
"diffusion_chunk_size": (
self.configs.infer_setting.sample_diffusion_chunk_size
if not self.training
else None
),
}
)
return autocasting_disable_decorator(self.configs.skip_amp.sample_diffusion)(
sample_diffusion
)(**_configs, **kwargs)
def run_confidence_head(self, *args, **kwargs):
"""
Runs the confidence head with optional automatic mixed precision (AMP) disabled.
Returns:
Any: The output of the confidence head.
"""
return autocasting_disable_decorator(self.configs.skip_amp.confidence_head)(
self.confidence_head
)(*args, **kwargs)
def main_inference_loop(
self,
input_feature_dict: dict[str, Any],
label_dict: dict[str, Any],
N_cycle: int,
mode: str,
inplace_safe: bool = True,
chunk_size: Optional[int] = 4,
N_model_seed: int = 1,
symmetric_permutation: SymmetricPermutation = None,
) -> tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
"""
Main inference loop (multiple model seeds) for the Alphafold3 model.
Args:
input_feature_dict (dict[str, Any]): Input features dictionary.
label_dict (dict[str, Any]): Label dictionary.
N_cycle (int): Number of cycles.
mode (str): Mode of operation (e.g., 'inference').
inplace_safe (bool): Whether to use inplace operations safely. Defaults to True.
chunk_size (Optional[int]): Chunk size for memory-efficient operations. Defaults to 4.
N_model_seed (int): Number of model seeds. Defaults to 1.
symmetric_permutation (SymmetricPermutation): Symmetric permutation object. Defaults to None.
Returns:
tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]: Prediction, log, and time dictionaries.
"""
pred_dicts = []
log_dicts = []
time_trackers = []
for _ in range(N_model_seed):
pred_dict, log_dict, time_tracker = self._main_inference_loop(
input_feature_dict=input_feature_dict,
label_dict=label_dict,
N_cycle=N_cycle,
mode=mode,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
symmetric_permutation=symmetric_permutation,
)
pred_dicts.append(pred_dict)
log_dicts.append(log_dict)
time_trackers.append(time_tracker)
# Combine outputs of multiple models
def _cat(dict_list, key):
return torch.cat([x[key] for x in dict_list], dim=0)
def _list_join(dict_list, key):
return sum([x[key] for x in dict_list], [])
all_pred_dict = {
"coordinate": _cat(pred_dicts, "coordinate"),
"summary_confidence": _list_join(pred_dicts, "summary_confidence"),
"full_data": _list_join(pred_dicts, "full_data"),
"plddt": _cat(pred_dicts, "plddt"),
"pae": _cat(pred_dicts, "pae"),
"pde": _cat(pred_dicts, "pde"),
"resolved": _cat(pred_dicts, "resolved"),
}
all_log_dict = simple_merge_dict_list(log_dicts)
all_time_dict = simple_merge_dict_list(time_trackers)
return all_pred_dict, all_log_dict, all_time_dict
def _main_inference_loop(
self,
input_feature_dict: dict[str, Any],
label_dict: dict[str, Any],
N_cycle: int,
mode: str,
inplace_safe: bool = True,
chunk_size: Optional[int] = 4,
symmetric_permutation: SymmetricPermutation = None,
) -> tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
"""
Main inference loop (single model seed) for the Alphafold3 model.
Returns:
tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]: Prediction, log, and time dictionaries.
"""
step_st = time.time()
N_token = input_feature_dict["residue_index"].shape[-1]
if N_token <= 16:
deepspeed_evo_attention_condition_satisfy = False
else:
deepspeed_evo_attention_condition_satisfy = True
log_dict = {}
pred_dict = {}
time_tracker = {}
s_inputs, s, z = self.get_pairformer_output(
input_feature_dict=input_feature_dict,
N_cycle=N_cycle,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
if mode == "inference":
keys_to_delete = []
for key in input_feature_dict.keys():
if "template_" in key or key in [
"msa",
"has_deletion",
"deletion_value",
"profile",
"deletion_mean",
"token_bonds",
]:
keys_to_delete.append(key)
for key in keys_to_delete:
del input_feature_dict[key]
torch.cuda.empty_cache()
step_trunk = time.time()
time_tracker.update({"pairformer": step_trunk - step_st})
# Sample diffusion
# [..., N_sample, N_atom, 3]
N_sample = self.configs.sample_diffusion["N_sample"]
N_step = self.configs.sample_diffusion["N_step"]
noise_schedule = self.inference_noise_scheduler(
N_step=N_step, device=s_inputs.device, dtype=s_inputs.dtype
)
pred_dict["coordinate"] = self.sample_diffusion(
denoise_net=self.diffusion_module,
input_feature_dict=input_feature_dict,
s_inputs=s_inputs,
s_trunk=s,
z_trunk=z,
N_sample=N_sample,
noise_schedule=noise_schedule,
inplace_safe=inplace_safe,
)
step_diffusion = time.time()
time_tracker.update({"diffusion": step_diffusion - step_trunk})
if mode == "inference" and N_token > 2000:
torch.cuda.empty_cache()
# Distogram logits: log contact_probs only, to reduce the dimension
pred_dict["contact_probs"] = sample_confidence.compute_contact_prob(
distogram_logits=self.distogram_head(z),
**sample_confidence.get_bin_params(self.configs.loss.distogram),
) # [N_token, N_token]
# Confidence logits
(
pred_dict["plddt"],
pred_dict["pae"],
pred_dict["pde"],
pred_dict["resolved"],
) = self.run_confidence_head(
input_feature_dict=input_feature_dict,
s_inputs=s_inputs,
s_trunk=s,
z_trunk=z,
pair_mask=None,
x_pred_coords=pred_dict["coordinate"],
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
step_confidence = time.time()
time_tracker.update({"confidence": step_confidence - step_diffusion})
time_tracker.update({"model_forward": time.time() - step_st})
# Permutation: when label is given, permute coordinates and other heads
if label_dict is not None and symmetric_permutation is not None:
pred_dict, log_dict = symmetric_permutation.permute_inference_pred_dict(
input_feature_dict=input_feature_dict,
pred_dict=pred_dict,
label_dict=label_dict,
permute_by_pocket=("pocket_mask" in label_dict)
and ("interested_ligand_mask" in label_dict),
)
last_step_seconds = step_confidence
time_tracker.update({"permutation": time.time() - last_step_seconds})
# Summary Confidence & Full Data
# Computed after coordinates and logits are permuted
if label_dict is None:
interested_atom_mask = None
else:
interested_atom_mask = label_dict.get("interested_ligand_mask", None)
pred_dict["summary_confidence"], pred_dict["full_data"] = (
sample_confidence.compute_full_data_and_summary(
configs=self.configs,
pae_logits=pred_dict["pae"],
plddt_logits=pred_dict["plddt"],
pde_logits=pred_dict["pde"],
contact_probs=pred_dict.get(
"per_sample_contact_probs", pred_dict["contact_probs"]
),
token_asym_id=input_feature_dict["asym_id"],
token_has_frame=input_feature_dict["has_frame"],
atom_coordinate=pred_dict["coordinate"],
atom_to_token_idx=input_feature_dict["atom_to_token_idx"],
atom_is_polymer=1 - input_feature_dict["is_ligand"],
N_recycle=N_cycle,
interested_atom_mask=interested_atom_mask,
return_full_data=True,
mol_id=(input_feature_dict["mol_id"] if mode != "inference" else None),
elements_one_hot=(
input_feature_dict["ref_element"] if mode != "inference" else None
),
)
)
return pred_dict, log_dict, time_tracker
def main_train_loop(
self,
input_feature_dict: dict[str, Any],
label_full_dict: dict[str, Any],
label_dict: dict,
N_cycle: int,
symmetric_permutation: SymmetricPermutation,
inplace_safe: bool = False,
chunk_size: Optional[int] = None,
) -> tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
"""
Main training loop for the Alphafold3 model.
Args:
input_feature_dict (dict[str, Any]): Input features dictionary.
label_full_dict (dict[str, Any]): Full label dictionary (uncropped).
label_dict (dict): Label dictionary (cropped).
N_cycle (int): Number of cycles.
symmetric_permutation (SymmetricPermutation): Symmetric permutation object.
inplace_safe (bool): Whether to use inplace operations safely. Defaults to False.
chunk_size (Optional[int]): Chunk size for memory-efficient operations. Defaults to None.
Returns:
tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
Prediction, updated label, and log dictionaries.
"""
N_token = input_feature_dict["residue_index"].shape[-1]
if N_token <= 16:
deepspeed_evo_attention_condition_satisfy = False
else:
deepspeed_evo_attention_condition_satisfy = True
s_inputs, s, z = self.get_pairformer_output(
input_feature_dict=input_feature_dict,
N_cycle=N_cycle,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
log_dict = {}
pred_dict = {}
# Mini-rollout: used for confidence and label permutation
with torch.no_grad():
# [..., 1, N_atom, 3]
N_sample_mini_rollout = self.configs.sample_diffusion[
"N_sample_mini_rollout"
] # =1
N_step_mini_rollout = self.configs.sample_diffusion["N_step_mini_rollout"]
coordinate_mini = self.sample_diffusion(
denoise_net=self.diffusion_module,
input_feature_dict=input_feature_dict,
s_inputs=s_inputs.detach(),
s_trunk=s.detach(),
z_trunk=z.detach(),
N_sample=N_sample_mini_rollout,
noise_schedule=self.inference_noise_scheduler(
N_step=N_step_mini_rollout,
device=s_inputs.device,
dtype=s_inputs.dtype,
),
)
coordinate_mini.detach_()
pred_dict["coordinate_mini"] = coordinate_mini
# Permute ground truth to match mini-rollout prediction
label_dict, perm_log_dict = (
symmetric_permutation.permute_label_to_match_mini_rollout(
coordinate_mini,
input_feature_dict,
label_dict,
label_full_dict,
)
)
log_dict.update(perm_log_dict)
# Confidence: use mini-rollout prediction, and detach token embeddings
plddt_pred, pae_pred, pde_pred, resolved_pred = self.run_confidence_head(
input_feature_dict=input_feature_dict,
s_inputs=s_inputs,
s_trunk=s,
z_trunk=z,
pair_mask=None,
x_pred_coords=coordinate_mini,
use_memory_efficient_kernel=self.configs.use_memory_efficient_kernel,
use_deepspeed_evo_attention=self.configs.use_deepspeed_evo_attention
and deepspeed_evo_attention_condition_satisfy,
use_lma=self.configs.use_lma,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
pred_dict.update(
{
"plddt": plddt_pred,
"pae": pae_pred,
"pde": pde_pred,
"resolved": resolved_pred,
}
)
if self.train_confidence_only:
# Skip diffusion loss and distogram loss. Return now.
return pred_dict, label_dict, log_dict
# Denoising: use permuted coords to generate noisy samples and perform denoising
# x_denoised: [..., N_sample, N_atom, 3]
# x_noise_level: [..., N_sample]
N_sample = self.diffusion_batch_size
_, x_denoised, x_noise_level = autocasting_disable_decorator(
self.configs.skip_amp.sample_diffusion_training
)(sample_diffusion_training)(
noise_sampler=self.train_noise_sampler,
denoise_net=self.diffusion_module,
label_dict=label_dict,
input_feature_dict=input_feature_dict,
s_inputs=s_inputs,
s_trunk=s,
z_trunk=z,
N_sample=N_sample,
diffusion_chunk_size=self.configs.diffusion_chunk_size,
)
pred_dict.update(
{
"distogram": self.distogram_head(z),
# [..., N_sample=48, N_atom, 3]: diffusion loss
"coordinate": x_denoised,
"noise_level": x_noise_level,
}
)
# Permute symmetric atom/chain in each sample to match true structure
# Note: currently chains cannot be permuted since label is cropped
pred_dict, perm_log_dict, _, _ = (
symmetric_permutation.permute_diffusion_sample_to_match_label(
input_feature_dict, pred_dict, label_dict, stage="train"
)
)
log_dict.update(perm_log_dict)
return pred_dict, label_dict, log_dict
def forward(
self,
input_feature_dict: dict[str, Any],
label_full_dict: dict[str, Any],
label_dict: dict[str, Any],
mode: str = "inference",
current_step: Optional[int] = None,
symmetric_permutation: SymmetricPermutation = None,
) -> tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
"""
Forward pass of the Alphafold3 model.
Args:
input_feature_dict (dict[str, Any]): Input features dictionary.
label_full_dict (dict[str, Any]): Full label dictionary (uncropped).
label_dict (dict[str, Any]): Label dictionary (cropped).
mode (str): Mode of operation ('train', 'inference', 'eval'). Defaults to 'inference'.
current_step (Optional[int]): Current training step. Defaults to None.
symmetric_permutation (SymmetricPermutation): Symmetric permutation object. Defaults to None.
Returns:
tuple[dict[str, torch.Tensor], dict[str, Any], dict[str, Any]]:
Prediction, updated label, and log dictionaries.
"""
assert mode in ["train", "inference", "eval"]
inplace_safe = not (self.training or torch.is_grad_enabled())
chunk_size = self.configs.infer_setting.chunk_size if inplace_safe else None
if mode == "train":
nc_rng = np.random.RandomState(current_step)
N_cycle = nc_rng.randint(1, self.N_cycle + 1)
assert self.training
assert label_dict is not None
assert symmetric_permutation is not None
pred_dict, label_dict, log_dict = self.main_train_loop(
input_feature_dict=input_feature_dict,
label_full_dict=label_full_dict,
label_dict=label_dict,
N_cycle=N_cycle,
symmetric_permutation=symmetric_permutation,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
)
elif mode == "inference":
pred_dict, log_dict, time_tracker = self.main_inference_loop(
input_feature_dict=input_feature_dict,
label_dict=None,
N_cycle=self.N_cycle,
mode=mode,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
N_model_seed=self.N_model_seed,
symmetric_permutation=None,
)
log_dict.update({"time": time_tracker})
elif mode == "eval":
if label_dict is not None:
assert (
label_dict["coordinate"].size()
== label_full_dict["coordinate"].size()
)
label_dict.update(label_full_dict)
pred_dict, log_dict, time_tracker = self.main_inference_loop(
input_feature_dict=input_feature_dict,
label_dict=label_dict,
N_cycle=self.N_cycle,
mode=mode,
inplace_safe=inplace_safe,
chunk_size=chunk_size,
N_model_seed=self.N_model_seed,
symmetric_permutation=symmetric_permutation,
)
log_dict.update({"time": time_tracker})
return pred_dict, label_dict, log_dict
|