File size: 27,596 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
import torch
from ml_collections.config_dict import ConfigDict
from protenix.metrics.clash import Clash
from protenix.utils.distributed import traverse_and_aggregate
def merge_per_sample_confidence_scores(summary_confidence_list: list[dict]) -> dict:
"""
Merge confidence scores from multiple samples into a single dictionary.
Args:
summary_confidence_list (list[dict]): List of dictionaries containing confidence scores for each sample.
Returns:
dict: Merged dictionary of confidence scores.
"""
def stack_score(tensor_list: list):
if tensor_list[0].dim() == 0:
tensor_list = [x.unsqueeze(0) for x in tensor_list]
score = torch.stack(tensor_list, dim=0)
return score
return traverse_and_aggregate(summary_confidence_list, aggregation_func=stack_score)
def _compute_full_data_and_summary(
configs: ConfigDict,
pae_logits: torch.Tensor,
plddt_logits: torch.Tensor,
pde_logits: torch.Tensor,
contact_probs: torch.Tensor,
token_asym_id: torch.Tensor,
token_has_frame: torch.Tensor,
atom_coordinate: torch.Tensor,
atom_to_token_idx: torch.Tensor,
atom_is_polymer: torch.Tensor,
N_recycle: int,
interested_atom_mask: Optional[torch.Tensor] = None,
elements_one_hot: Optional[torch.Tensor] = None,
mol_id: Optional[torch.Tensor] = None,
return_full_data: bool = False,
) -> tuple[list[dict], list[dict]]:
"""
Compute full data and summary confidence scores for the given inputs.
Args:
configs: Configuration object.
pae_logits (torch.Tensor): Logits for PAE (Predicted Aligned Error).
plddt_logits (torch.Tensor): Logits for pLDDT (Predicted Local Distance Difference Test).
pde_logits (torch.Tensor): Logits for PDE (Predicted Distance Error).
contact_probs (torch.Tensor): Contact probabilities.
token_asym_id (torch.Tensor): Asymmetric ID for tokens.
token_has_frame (torch.Tensor): Indicator for tokens having a frame.
atom_coordinate (torch.Tensor): Atom coordinates.
atom_to_token_idx (torch.Tensor): Mapping from atoms to tokens.
atom_is_polymer (torch.Tensor): Indicator for atoms being part of a polymer.
N_recycle (int): Number of recycles.
interested_atom_mask (Optional[torch.Tensor]): Mask for interested atoms. Defaults to None.
elements_one_hot (Optional[torch.Tensor]): One-hot encoding for elements. Defaults to None.
mol_id (Optional[torch.Tensor]): Molecular ID. Defaults to None.
return_full_data (bool): Whether to return full data. Defaults to False.
Returns:
tuple[list[dict], list[dict]]:
- summary_confidence: List of dictionaries containing summary confidence scores.
- full_data: List of dictionaries containing full data if `return_full_data` is True.
"""
atom_is_ligand = (1 - atom_is_polymer).long()
token_is_ligand = torch.zeros_like(token_asym_id).scatter_add(
0, atom_to_token_idx, atom_is_ligand
)
token_is_ligand = token_is_ligand > 0
full_data = {}
full_data["atom_plddt"] = logits_to_score(
plddt_logits, **get_bin_params(configs.loss.plddt)
) # [N_s, N_atom]
# Cpu offload for saving cuda memory
pde_logits = pde_logits.to(plddt_logits.device)
full_data["token_pair_pde"] = logits_to_score(
pde_logits, **get_bin_params(configs.loss.pde)
) # [N_s, N_token, N_token]
del pde_logits
full_data["contact_probs"] = contact_probs.clone() # [N_token, N_token]
pae_logits = pae_logits.to(plddt_logits.device)
full_data["token_pair_pae"], pae_prob = logits_to_score(
pae_logits, **get_bin_params(configs.loss.pae), return_prob=True
) # [N_s, N_token, N_token]
del pae_logits
summary_confidence = {}
summary_confidence["plddt"] = full_data["atom_plddt"].mean(dim=-1) * 100 # [N_s, ]
summary_confidence["gpde"] = (
full_data["token_pair_pde"] * full_data["contact_probs"]
).sum(dim=[-1, -2]) / full_data["contact_probs"].sum(dim=[-1, -2])
summary_confidence["ptm"] = calculate_ptm(
pae_prob, has_frame=token_has_frame, **get_bin_params(configs.loss.pae)
) # [N_s, ]
summary_confidence["iptm"] = calculate_iptm(
pae_prob,
has_frame=token_has_frame,
asym_id=token_asym_id,
**get_bin_params(configs.loss.pae)
) # [N_s, ]
# Add: 'chain_pair_iptm', 'chain_pair_iptm_global' 'chain_iptm', 'chain_ptm'
summary_confidence.update(
calculate_chain_based_ptm(
pae_prob,
has_frame=token_has_frame,
asym_id=token_asym_id,
token_is_ligand=token_is_ligand,
**get_bin_params(configs.loss.pae)
)
)
# Add: 'chain_plddt', 'chain_pair_plddt'
summary_confidence.update(
calculate_chain_based_plddt(
full_data["atom_plddt"], token_asym_id, atom_to_token_idx
)
)
del pae_prob
summary_confidence["has_clash"] = calculate_clash(
atom_coordinate,
token_asym_id,
atom_to_token_idx,
atom_is_polymer,
configs.metrics.clash.af3_clash_threshold,
)
summary_confidence["num_recycles"] = torch.tensor(
N_recycle, device=atom_coordinate.device
)
# TODO: disorder
summary_confidence["disorder"] = torch.zeros_like(summary_confidence["ptm"])
summary_confidence["ranking_score"] = (
0.8 * summary_confidence["iptm"]
+ 0.2 * summary_confidence["ptm"]
+ 0.5 * summary_confidence["disorder"]
- 100 * summary_confidence["has_clash"]
)
if interested_atom_mask is not None:
token_idx = atom_to_token_idx[interested_atom_mask[0].bool()].long()
asym_ids = token_asym_id[token_idx]
assert len(torch.unique(asym_ids)) == 1
interested_asym_id = asym_ids[0].item()
N_chains = token_asym_id.max().long().item() + 1
pb_ranking_score = summary_confidence["chain_pair_iptm_global"][
:, interested_asym_id, torch.arange(N_chains) != interested_asym_id
] # [N_s, N_chain - 1]
summary_confidence["pb_ranking_score"] = pb_ranking_score[:, 0]
if elements_one_hot is not None and mol_id is not None:
vdw_clash = calculate_vdw_clash(
pred_coordinate=atom_coordinate,
asym_id=token_asym_id,
mol_id=mol_id,
is_polymer=atom_is_polymer,
atom_token_idx=atom_to_token_idx,
elements_one_hot=elements_one_hot,
threshold=configs.metrics.clash.vdw_clash_threshold,
)
N_sample = atom_coordinate.shape[0]
vdw_clash_per_sample_flag = (
vdw_clash[:, interested_asym_id, :].reshape(N_sample, -1).max(dim=-1)[0]
)
summary_confidence["has_vdw_pl_clash"] = vdw_clash_per_sample_flag
summary_confidence["pb_ranking_score_vdw_penalized"] = (
summary_confidence["pb_ranking_score"] - 100 * vdw_clash_per_sample_flag
)
summary_confidence = break_down_to_per_sample_dict(
summary_confidence, shared_keys=["num_recycles"]
)
torch.cuda.empty_cache()
if return_full_data:
# save extra inputs that are used for computing summary_confidence
full_data["token_has_frame"] = token_has_frame.clone()
full_data["token_asym_id"] = token_asym_id.clone()
full_data["atom_to_token_idx"] = atom_to_token_idx.clone()
full_data["atom_is_polymer"] = atom_is_polymer.clone()
full_data["atom_coordinate"] = atom_coordinate.clone()
full_data = break_down_to_per_sample_dict(
full_data,
shared_keys=[
"contact_probs",
"token_has_frame",
"token_asym_id",
"atom_to_token_idx",
"atom_is_polymer",
],
)
return summary_confidence, full_data
else:
return summary_confidence, [{}]
def get_bin_params(cfg: ConfigDict) -> dict:
"""
Extract bin parameters from the configuration object.
"""
return {"min_bin": cfg.min_bin, "max_bin": cfg.max_bin, "no_bins": cfg.no_bins}
def compute_contact_prob(
distogram_logits: torch.Tensor,
min_bin: float,
max_bin: float,
no_bins: int,
thres=8.0,
) -> torch.Tensor:
"""
Compute the contact probability from distogram logits.
Args:
distogram_logits (torch.Tensor): Logits for the distogram.
Shape: [N_token, N_token, N_bins]
min_bin (float): Minimum bin value.
max_bin (float): Maximum bin value.
no_bins (int): Number of bins.
thres (float): Threshold distance for contact probability. Defaults to 8.0.
Returns:
torch.Tensor: Contact probability.
Shape: [N_token, N_token]
"""
distogram_prob = torch.nn.functional.softmax(
distogram_logits, dim=-1
) # [N_token, N_token, N_bins]
distogram_bins = get_bin_centers(min_bin, max_bin, no_bins)
thres_idx = (distogram_bins < thres).sum()
contact_prob = distogram_prob[..., :thres_idx].sum(-1)
return contact_prob
def get_bin_centers(min_bin: float, max_bin: float, no_bins: int) -> torch.Tensor:
"""
Calculate the centers of the bins for a given range and number of bins.
Args:
min_bin (float): The minimum value of the bin range.
max_bin (float): The maximum value of the bin range.
no_bins (int): The number of bins.
Returns:
torch.Tensor: The centers of the bins.
Shape: [no_bins]
"""
bin_width = (max_bin - min_bin) / no_bins
boundaries = torch.linspace(
start=min_bin,
end=max_bin - bin_width,
steps=no_bins,
)
bin_centers = boundaries + 0.5 * bin_width
return bin_centers
def logits_to_prob(logits: torch.Tensor, dim=-1) -> torch.Tensor:
return torch.nn.functional.softmax(logits, dim=dim)
def logits_to_score(
logits: torch.Tensor,
min_bin: float,
max_bin: float,
no_bins: int,
return_prob=False,
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
"""
Convert logits to a score using bin centers.
Args:
logits (torch.Tensor): Logits tensor.
Shape: [..., no_bins]
min_bin (float): Minimum bin value.
max_bin (float): Maximum bin value.
no_bins (int): Number of bins.
return_prob (bool): Whether to return the probability distribution. Defaults to False.
Returns:
score (torch.Tensor): Converted score.
Shape: [...]
prob (torch.Tensor, optional): Probability distribution if `return_prob` is True.
Shape: [..., no_bins]
"""
prob = logits_to_prob(logits, dim=-1)
bin_centers = get_bin_centers(min_bin, max_bin, no_bins).to(logits.device)
score = prob @ bin_centers
if return_prob:
return score, prob
else:
return score
def calculate_normalization(N):
# TM-score normalization constant
return 1.24 * (max(N, 19) - 15) ** (1 / 3) - 1.8
def calculate_vdw_clash(
pred_coordinate: torch.Tensor,
asym_id: torch.LongTensor,
mol_id: torch.LongTensor,
atom_token_idx: torch.LongTensor,
is_polymer: torch.BoolTensor,
elements_one_hot: torch.Tensor,
threshold: float,
) -> torch.Tensor:
"""
Calculate Van der Waals (VDW) clash for predicted coordinates.
Args:
pred_coordinate (torch.Tensor): Predicted coordinates of atoms.
Shape: [N_sample, N_atom, 3]
asym_id (torch.LongTensor): Asymmetric ID for tokens.
Shape: [N_token]
mol_id (torch.LongTensor): Molecular ID.
Shape: [N_atom]
atom_token_idx (torch.LongTensor): Mapping from atoms to tokens.
Shape: [N_atom]
is_polymer (torch.BoolTensor): Indicator for atoms being part of a polymer.
Shape: [N_atom]
elements_one_hot (torch.Tensor): One-hot encoding for elements.
Shape: [N_atom, N_elements]
threshold (float): Threshold for VDW clash detection.
Returns:
torch.Tensor: VDW clash summary.
Shape: [N_sample]
"""
clash_calculator = Clash(vdw_clash_threshold=threshold, compute_af3_clash=False)
# Check ligand-polymer VDW clash
N_sample = pred_coordinate.shape[0]
dummy_is_dna = torch.zeros_like(is_polymer)
dummy_is_rna = torch.zeros_like(is_polymer)
clash_dict = clash_calculator(
pred_coordinate=pred_coordinate,
asym_id=asym_id,
atom_to_token_idx=atom_token_idx,
mol_id=mol_id,
is_ligand=1 - is_polymer,
is_protein=is_polymer,
is_dna=dummy_is_dna,
is_rna=dummy_is_rna,
elements_one_hot=elements_one_hot,
)
return clash_dict["summary"]["vdw_clash"]
def calculate_clash(
pred_coordinate: torch.Tensor,
asym_id: torch.LongTensor,
atom_to_token_idx: torch.LongTensor,
is_polymer: torch.BoolTensor,
threshold: float,
) -> torch.Tensor:
"""Check complex clash
Args:
pred_coordinate (torch.Tensor): [N_sample, N_atom, 3]
asym_id (torch.LongTensor): [N_token, ]
atom_to_token_idx (torch.LongTensor): [N_atom, ]
is_polymer (torch.BoolTensor): [N_atom, ]
threshold: (float)
Returns:
torch.Tensor: [N_sample] whether there is a clash in the complex
"""
N_sample = pred_coordinate.shape[0]
dummy_is_dna = torch.zeros_like(is_polymer)
dummy_is_rna = torch.zeros_like(is_polymer)
clash_calculator = Clash(vdw_clash_threshold=threshold, compute_vdw_clash=False)
clash_dict = clash_calculator(
pred_coordinate,
asym_id,
atom_to_token_idx,
1 - is_polymer,
is_polymer,
dummy_is_dna,
dummy_is_rna,
)
return clash_dict["summary"]["af3_clash"].reshape(N_sample, -1).max(dim=-1)[0]
def calculate_ptm(
pae_prob: torch.Tensor,
has_frame: torch.BoolTensor,
min_bin: float,
max_bin: float,
no_bins: int,
token_mask: Optional[torch.BoolTensor] = None,
) -> torch.Tensor:
"""Compute pTM score
Args:
pae_prob (torch.Tensor): Predicted probability from PAE loss head.
Shape: [..., N_token, N_token, N_bins]
has_frame (torch.BoolTensor): Indicator for tokens having a frame.
Shape: [N_token, ]
min_bin (float): Minimum bin value.
max_bin (float): Maximum bin value.
no_bins (int): Number of bins.
token_mask (Optional[torch.BoolTensor]): Mask for tokens.
Shape: [N_token, ] or None
Returns:
torch.Tensor: pTM score. Higher values indicate better ranking.
Shape: [...]
"""
has_frame = has_frame.bool()
if token_mask is not None:
token_mask = token_mask.bool()
pae_prob = pae_prob[..., token_mask, :, :][
..., :, token_mask, :
] # [..., N_d, N_d, N_bins]
has_frame = has_frame[token_mask] # [N_d, ]
if has_frame.sum() == 0:
return torch.zeros(size=pae_prob.shape[:-3], device=pae_prob.device)
N_d = has_frame.shape[-1]
ptm_norm = calculate_normalization(N_d)
bin_center = get_bin_centers(min_bin, max_bin, no_bins)
per_bin_weight = (1 / (1 + (bin_center / ptm_norm) ** 2)).to(
pae_prob.device
) # [N_bins]
token_token_ptm = (pae_prob * per_bin_weight).sum(dim=-1) # [..., N_d, N_d]
ptm = token_token_ptm.mean(dim=-1)[..., has_frame].max(dim=-1).values
return ptm
def calculate_chain_based_ptm(
pae_prob: torch.Tensor,
has_frame: torch.BoolTensor,
asym_id: torch.LongTensor,
token_is_ligand: torch.BoolTensor,
min_bin: float,
max_bin: float,
no_bins: int,
) -> dict[str, torch.Tensor]:
"""
Compute chain-based pTM scores.
Args:
pae_prob (torch.Tensor): Predicted probability from PAE loss head.
Shape: [..., N_token, N_token, N_bins]
has_frame (torch.BoolTensor): Indicator for tokens having a frame.
Shape: [N_token, ]
asym_id (torch.LongTensor): Asymmetric ID for tokens.
Shape: [N_token, ]
token_is_ligand (torch.BoolTensor): Indicator for tokens being ligands.
Shape: [N_token, ]
min_bin (float): Minimum bin value.
max_bin (float): Maximum bin value.
no_bins (int): Number of bins.
Returns:
dict: Dictionary containing chain-based pTM scores.
- chain_ptm (torch.Tensor): pTM scores for each chain.
- chain_iptm (torch.Tensor): ipTM scores for chain interface.
- chain_pair_iptm (torch.Tensor): Pairwise ipTM scores between chains.
- chain_pair_iptm_global (torch.Tensor): Global pairwise ipTM scores between chains.
"""
has_frame = has_frame.bool()
asym_id = asym_id.long()
asym_id_to_asym_mask = {aid.item(): asym_id == aid for aid in torch.unique(asym_id)}
chain_is_ligand = {
aid.item(): token_is_ligand[asym_id == aid].sum() >= (asym_id == aid).sum() // 2
for aid in torch.unique(asym_id)
}
batch_shape = pae_prob.shape[:-3]
# Chain_pair_iptm
# Change to dense tensor, otherwise it's troublesome in break_down_to_per_sample_dict and traverse_and_aggregate across different devices
N_chain = len(asym_id_to_asym_mask)
chain_pair_iptm = torch.zeros(size=batch_shape + (N_chain, N_chain)).to(
pae_prob.device
)
for aid_1 in range(N_chain):
for aid_2 in range(N_chain):
if aid_1 == aid_2:
continue
if aid_1 > aid_2:
chain_pair_iptm[:, aid_1, aid_2] = chain_pair_iptm[:, aid_2, aid_1]
continue
pair_mask = asym_id_to_asym_mask[aid_1] + asym_id_to_asym_mask[aid_2]
chain_pair_iptm[:, aid_1, aid_2] = calculate_iptm(
pae_prob,
has_frame,
asym_id,
min_bin,
max_bin,
no_bins,
token_mask=pair_mask,
)
# chain_ptm
chain_ptm = torch.zeros(size=batch_shape + (N_chain,)).to(pae_prob.device)
for aid, asym_mask in asym_id_to_asym_mask.items():
chain_ptm[:, aid] = calculate_ptm(
pae_prob,
has_frame,
min_bin,
max_bin,
no_bins,
token_mask=asym_mask,
)
# Chain iptm
chain_has_frame = [
(asym_id_to_asym_mask[i] * has_frame).any() for i in range(N_chain)
]
chain_iptm = torch.zeros(size=batch_shape + (N_chain,)).to(pae_prob.device)
for aid, asym_mask in asym_id_to_asym_mask.items():
pairs = [
(i, j)
for i in range(N_chain)
for j in range(N_chain)
if (i == aid or j == aid) and (i != j) and chain_has_frame[i]
]
vals = [chain_pair_iptm[:, i, j] for (i, j) in pairs]
if len(vals) > 0:
chain_iptm[:, aid] = torch.stack(vals, dim=-1).mean(dim=-1)
# Chain_pair_iptm_global
chain_pair_iptm_global = torch.zeros(size=batch_shape + (N_chain, N_chain)).to(
pae_prob.device
)
for aid_1 in range(N_chain):
for aid_2 in range(N_chain):
if aid_1 == aid_2:
continue
if chain_is_ligand[aid_1]:
chain_pair_iptm_global[:, aid_1, aid_2] = chain_iptm[:, aid_1]
elif chain_is_ligand[aid_2]:
chain_pair_iptm_global[:, aid_1, aid_2] = chain_iptm[:, aid_2]
else:
chain_pair_iptm_global[:, aid_1, aid_2] = (
chain_iptm[:, aid_1] + chain_iptm[:, aid_2]
) * 0.5
return {
"chain_ptm": chain_ptm,
"chain_iptm": chain_iptm,
"chain_pair_iptm": chain_pair_iptm,
"chain_pair_iptm_global": chain_pair_iptm_global,
}
def calculate_chain_based_plddt(
atom_plddt: torch.Tensor,
asym_id: torch.LongTensor,
atom_to_token_idx: torch.LongTensor,
) -> dict[str, torch.Tensor]:
"""
Calculate chain-based pLDDT scores.
Args:
atom_plddt (torch.Tensor): Predicted pLDDT scores for atoms.
Shape: [N_sample, N_atom]
asym_id (torch.LongTensor): Asymmetric ID for tokens.
Shape: [N_token]
atom_to_token_idx (torch.LongTensor): Mapping from atoms to tokens.
Shape: [N_atom]
Returns:
dict: Dictionary containing chain-based pLDDT scores.
- chain_plddt (torch.Tensor): pLDDT scores for each chain.
- chain_pair_plddt (torch.Tensor): Pairwise pLDDT scores between chains.
"""
asym_id = asym_id.long()
asym_id_to_asym_mask = {aid.item(): asym_id == aid for aid in torch.unique(asym_id)}
N_chain = len(asym_id_to_asym_mask)
assert N_chain == asym_id.max() + 1 # make sure it is from 0 to N_chain-1
def _calculate_lddt_with_token_mask(token_mask):
atom_mask = token_mask[atom_to_token_idx]
sub_plddt = atom_plddt[:, atom_mask].mean(-1)
return sub_plddt
batch_shape = atom_plddt.shape[:-1]
# Chain_plddt
chain_plddt = torch.zeros(size=batch_shape + (N_chain,)).to(atom_plddt.device)
for aid, asym_mask in asym_id_to_asym_mask.items():
chain_plddt[:, aid] = _calculate_lddt_with_token_mask(token_mask=asym_mask)
# Chain_pair_plddt
chain_pair_plddt = torch.zeros(size=batch_shape + (N_chain, N_chain)).to(
atom_plddt.device
)
for aid_1 in asym_id_to_asym_mask:
for aid_2 in asym_id_to_asym_mask:
if aid_1 == aid_2:
continue
pair_mask = asym_id_to_asym_mask[aid_1] + asym_id_to_asym_mask[aid_2]
chain_pair_plddt[:, aid_1, aid_2] = _calculate_lddt_with_token_mask(
token_mask=pair_mask
)
return {"chain_plddt": chain_plddt, "chain_pair_plddt": chain_pair_plddt}
def calculate_iptm(
pae_prob: torch.Tensor,
has_frame: torch.BoolTensor,
asym_id: torch.LongTensor,
min_bin: float,
max_bin: float,
no_bins: int,
token_mask: Optional[torch.BoolTensor] = None,
eps: float = 1e-8,
):
"""
Compute ipTM score.
Args:
pae_prob (torch.Tensor): Predicted probability from PAE loss head.
Shape: [..., N_token, N_token, N_bins]
has_frame (torch.BoolTensor): Indicator for tokens having a frame.
Shape: [N_token, ]
asym_id (torch.LongTensor): Asymmetric ID for tokens.
Shape: [N_token, ]
min_bin (float): Minimum bin value.
max_bin (float): Maximum bin value.
no_bins (int): Number of bins.
token_mask (Optional[torch.BoolTensor]): Mask for tokens.
Shape: [N_token, ] or None
eps (float): Small value to avoid division by zero. Defaults to 1e-8.
Returns:
torch.Tensor: ipTM score. Higher values indicate better ranking.
Shape: [...]
"""
has_frame = has_frame.bool()
if token_mask is not None:
token_mask = token_mask.bool()
pae_prob = pae_prob[..., token_mask, :, :][
..., :, token_mask, :
] # [..., N_d, N_d, N_bins]
has_frame = has_frame[token_mask] # [N_d, ]
asym_id = asym_id[token_mask] # [N_d, ]
if has_frame.sum() == 0:
return torch.zeros(size=pae_prob.shape[:-3], device=pae_prob.device)
N_d = has_frame.shape[-1]
ptm_norm = calculate_normalization(N_d)
bin_center = get_bin_centers(min_bin, max_bin, no_bins)
per_bin_weight = (1 / (1 + (bin_center / ptm_norm) ** 2)).to(
pae_prob.device
) # [N_bins]
token_token_ptm = (pae_prob * per_bin_weight).sum(dim=-1) # [..., N_d, N_d]
is_diff_chain = asym_id[None, :] != asym_id[:, None] # [N_d, N_d]
iptm = (token_token_ptm * is_diff_chain).sum(dim=-1) / (
eps + is_diff_chain.sum(dim=-1)
) # [..., N_d]
iptm = iptm[..., has_frame].max(dim=-1).values
return iptm
def break_down_to_per_sample_dict(input_dict: dict, shared_keys=[]) -> list[dict]:
"""
Break down a dictionary containing tensors into a list of dictionaries, each corresponding to a sample.
Args:
input_dict (dict): Dictionary containing tensors.
shared_keys (list): List of keys that are shared across all samples. Defaults to an empty list.
Returns:
list[dict]: List of dictionaries, each containing data for a single sample.
"""
per_sample_keys = [key for key in input_dict if key not in shared_keys]
assert len(per_sample_keys) > 0
N_sample = input_dict[per_sample_keys[0]].size(0)
for key in per_sample_keys:
assert input_dict[key].size(0) == N_sample
per_sample_dict_list = []
for i in range(N_sample):
sample_dict = {key: input_dict[key][i] for key in per_sample_keys}
sample_dict.update({key: input_dict[key] for key in shared_keys})
per_sample_dict_list.append(sample_dict)
return per_sample_dict_list
@torch.no_grad()
def compute_full_data_and_summary(
configs,
pae_logits,
plddt_logits,
pde_logits,
contact_probs,
token_asym_id,
token_has_frame,
atom_coordinate,
atom_to_token_idx,
atom_is_polymer,
N_recycle,
return_full_data: bool = False,
interested_atom_mask=None,
mol_id=None,
elements_one_hot=None,
):
"""Wrapper of `_compute_full_data_and_summary` by enumerating over N samples"""
N_sample = pae_logits.size(0)
if contact_probs.dim() == 2:
# Convert to [N_sample, N_token, N_token]
contact_probs = contact_probs.unsqueeze(dim=0).expand(N_sample, -1, -1)
else:
assert contact_probs.dim() == 3
assert (
contact_probs.size(0) == plddt_logits.size(0) == pde_logits.size(0) == N_sample
)
summary_confidence = []
full_data = []
for i in range(N_sample):
summary_confidence_i, full_data_i = _compute_full_data_and_summary(
configs=configs,
pae_logits=pae_logits[i : i + 1],
plddt_logits=plddt_logits[i : i + 1],
pde_logits=pde_logits[i : i + 1],
contact_probs=contact_probs[i],
token_asym_id=token_asym_id,
token_has_frame=token_has_frame,
atom_coordinate=atom_coordinate[i : i + 1],
atom_to_token_idx=atom_to_token_idx,
atom_is_polymer=atom_is_polymer,
N_recycle=N_recycle,
interested_atom_mask=interested_atom_mask,
return_full_data=return_full_data,
mol_id=mol_id,
elements_one_hot=elements_one_hot,
)
summary_confidence.extend(summary_confidence_i)
full_data.extend(full_data_i)
return summary_confidence, full_data
|