File size: 14,904 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Union

import numpy as np
import torch
import torch.nn as nn
from scipy.spatial.transform import Rotation

from protenix.utils.scatter_utils import scatter


def random_sample_watermark(pred_x, gt_augmented_x, N_sample):
    watermark_label = torch.randint(0, 2, (N_sample,)).float().to(pred_x.device)
    replace_mask_expanded = (watermark_label==0.).unsqueeze(-1).unsqueeze(-1)  # (batch, 1, 1)
    sampled = torch.where(replace_mask_expanded, gt_augmented_x, pred_x)
    return sampled, watermark_label

def centre_random_augmentation(
    x_input_coords: torch.Tensor,
    N_sample: int = 1,
    s_trans: float = 1.0,
    centre_only: bool = False,
    mask: torch.Tensor = None,
    eps: float = 1e-12,
) -> torch.Tensor:
    """Implements Algorithm 19 in AF3

    Args:
        x_input_coords (torch.Tensor): input coords
            [..., N_atom, 3]
        N_sample (int, optional): the total number of augmentation. Defaults to 1.
        s_trans (float, optional): scale factor of trans. Defaults to 1.0.
        centre_only (bool, optional): if set true, will only perform centering without applying random translation and rotation.
        mask (torch.Tensor, optional): masking for the coords
            [..., N_atom]
        eps (float, optional): small number used for masked mean
    Returns:
        torch.Tensor:  the Augmentation version of input coords
            [..., N_sample, N_atom, 3]
    """

    N_atom = x_input_coords.size(-2)
    device = x_input_coords.device

    # Move to origin [..., N_atom, 3]
    if mask is None:
        x_input_coords = x_input_coords - torch.mean(
            input=x_input_coords, dim=-2, keepdim=True
        )
    else:
        center = (x_input_coords * mask.unsqueeze(dim=-1)).sum(dim=-2) / (
            mask.sum(dim=-1) + eps
        )
        x_input_coords = x_input_coords - center.unsqueeze(dim=-2)

    # Expand to [..., N_sample, N_atom, 3]
    x_input_coords = expand_at_dim(x_input_coords, dim=-3, n=N_sample)

    if centre_only:
        return x_input_coords

    # N_augment = batch_size * N_sample
    N_augment = torch.numel(x_input_coords[..., 0, 0])

    # Generate N_augment (rot, trans) pairs
    batch_size_shape = x_input_coords.shape[:-3]
    rot_matrix_random = (
        uniform_random_rotation(N_sample=N_augment)
        .to(device)
        .reshape(*batch_size_shape, N_sample, 3, 3)
    ).detach()  # [..., N_sample, 3, 3]
    trans_random = s_trans * torch.randn(size=(*batch_size_shape, N_sample, 3)).to(
        device
    )  # [..., N_sample, 3]
    x_augment_coords = (
        rot_vec_mul(
            r=expand_at_dim(rot_matrix_random, dim=-3, n=N_atom), t=x_input_coords
        )
        + trans_random[..., None, :]
    )  # [..., N_sample, N_atom, 3]
    return x_augment_coords


# Comment: Rotation.random is not supported by torch.compile()
def uniform_random_rotation(N_sample: int = 1) -> torch.Tensor:
    """Generate random rotation matrices with scipy.spatial.transform.Rotation

    Args:
        N_sample (int, optional): the total number of augmentation. Defaults to 1.

    Returns:
        torch.Tensor: N_sample rot matrics
            [N_sample, 3, 3]
    """
    rotation = Rotation.random(num=N_sample)
    rot_matrix = torch.from_numpy(rotation.as_matrix()).float()  # [N_sample, 3, 3]
    return rot_matrix


# this is from openfold.utils.rigid_utils import rot_vec_mul
def rot_vec_mul(r: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
    """Apply rot matrix to vector
    Applies a rotation to a vector. Written out by hand to avoid transfer
    to avoid AMP downcasting.

    Args:
        r (torch.Tensor): the rotation matrices
            [..., 3, 3]
        t (torch.Tensor): the coordinate tensors
            [..., 3]

    Returns:
        torch.Tensor: the rotated coordinates
    """
    x, y, z = torch.unbind(input=t, dim=-1)
    return torch.stack(
        tensors=[
            r[..., 0, 0] * x + r[..., 0, 1] * y + r[..., 0, 2] * z,
            r[..., 1, 0] * x + r[..., 1, 1] * y + r[..., 1, 2] * z,
            r[..., 2, 0] * x + r[..., 2, 1] * y + r[..., 2, 2] * z,
        ],
        dim=-1,
    )


# from openfold.utils.tensor_utils.permute_final_dims
# from openfold.utils.tensor_utils.flatten_final_dims
def permute_final_dims(tensor: torch.Tensor, inds: list[int]) -> torch.Tensor:
    """Permute final dims of tensor

    Args:
        tensor (torch.Tensor): the input tensor
            [...]
        inds (List[int]): the dim to permute

    Returns:
        torch.Tensor: the permuted tensor
    """
    zero_index = -1 * len(inds)
    first_inds = list(range(len(tensor.shape[:zero_index])))
    return tensor.permute(first_inds + [zero_index + i for i in inds])


def flatten_final_dims(t: torch.Tensor, num_dims: int) -> torch.Tensor:
    """Flatten final dims of tensor

    Args:
        t (torch.Tensor): the input tensor
            [...]
        num_dims (int): the number of final dims to flatten

    Returns:
        torch.Tensor: the flattened tensor
    """
    return t.reshape(shape=t.shape[:-num_dims] + (-1,))


def one_hot(
    x: torch.Tensor, lower_bins: torch.Tensor, upper_bins: torch.Tensor
) -> torch.Tensor:
    """Get one hot embedding of x from lower_bins and upper_bins
    Args:
        x (torch.Tensor): the input x
            [...]
        lower_bins (torch.Tensor): the lower bounds of bins
            [bins]
        upper_bins (torch.Tensor): the upper bounds of bins
            [bins]
    Returns:
        torch.Tensor: the one hot embedding of x from v_bins
            [..., bins]
    """
    dgram = (x[..., None] > lower_bins) * (x[..., None] < upper_bins).float()
    return dgram


# this is mostly from openfold.utils.torch_utils import batched_gather
def batched_gather(
    data: torch.Tensor, inds: torch.Tensor, dim: int = 0, no_batch_dims: int = 0
) -> torch.Tensor:
    """Gather data according to indices specify by inds

    Args:
        data (torch.Tensor): the input data
            [..., K, ...]
        inds (torch.Tensor): the indices for gathering data
            [..., N]
        dim (int, optional): along which dimension to gather data by inds (the dim of "K" "N"). Defaults to 0.
        no_batch_dims (int, optional): length of dimensions before the "dim" dimension. Defaults to 0.

    Returns:
        torch.Tensor: gathered data
            [..., N, ...]
    """

    # for the naive case
    if len(inds.shape) == 1 and no_batch_dims == 0 and dim == 0:
        return data[inds]

    ranges = []
    for i, s in enumerate(data.shape[:no_batch_dims]):
        r = torch.arange(s)
        r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
        ranges.append(r)

    remaining_dims = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
    remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
    ranges.extend(remaining_dims)
    return data[ranges]


def broadcast_token_to_atom(
    x_token: torch.Tensor, atom_to_token_idx: torch.Tensor
) -> torch.Tensor:
    """Broadcast token-level embeddings to atom-level embeddings

    Args:
        x_token (torch.Tensor): token embedding
            [..., N_token, d]
        atom_to_token_idx (torch.Tensor): map atom idx to token idx
            [..., N_atom] or [N_atom]

    Returns:
        torch.Tensor: atom embedding
            [..., N_atom, d]
    """

    if len(atom_to_token_idx.shape) == 1:
        # shape = [N_atom], easy index
        return x_token[..., atom_to_token_idx, :]
    else:
        assert atom_to_token_idx.shape[:-1] == x_token.shape[:-2]

    return batched_gather(
        data=x_token,
        inds=atom_to_token_idx,
        dim=-2,
        no_batch_dims=len(x_token.shape[:-2]),
    )


def aggregate_atom_to_token(
    x_atom: torch.Tensor,
    atom_to_token_idx: torch.Tensor,
    n_token: Optional[int] = None,
    reduce: str = "mean",
) -> torch.Tensor:
    """Aggregate atom embedding to obtain token embedding

    Args:
        x_atom (torch.Tensor): atom-level embedding
            [..., N_atom, d]
        atom_to_token_idx (torch.Tensor): map atom to token idx
            [..., N_atom] or [N_atom]
        n_token (int, optional): number of tokens in total. Defaults to None.
        reduce (str, optional): aggregation method. Defaults to "mean".

    Returns:
        torch.Tensor: token-level embedding
            [..., N_token, d]
    """

    # Broadcasting in the given dim.
    out = scatter(
        src=x_atom, index=atom_to_token_idx, dim=-2, dim_size=n_token, reduce=reduce
    )

    return out


def sample_indices(
    n: int,
    device: torch.device = torch.device("cpu"),
    lower_bound=1,
    strategy: str = "random",
) -> torch.Tensor:
    """Sample msa indices k from uniform[1,n]

    Args:
        n (int): the msa num
        strategy (str): the strategy to sample msa index, random or topk

    Returns:
        torch.Tensor: the sampled indices k
    """
    assert strategy in ["random", "topk"]
    sample_size = torch.randint(low=min(lower_bound, n), high=n + 1, size=(1,)).item()
    if strategy == "random":
        indices = torch.randperm(n=n, device=device)[:sample_size]
    if strategy == "topk":
        indices = torch.arange(sample_size, device=device)
    return indices


def sample_msa_feature_dict_random_without_replacement(
    feat_dict: dict[str, torch.Tensor],
    dim_dict: dict[str, int],
    cutoff: int = 512,
    lower_bound: int = 1,
    strategy: str = "random",
) -> dict[str, torch.Tensor]:
    """Sample a dict of MSA features randomly without replacement.

    Args:
        feat_dict (dict[str, torch.Tensor]): A dict containing the MSA features.
        dim_dict (dict[str, int]): A dict containing the dimensions of the MSA features.
        cutoff (int): The maximum number of features to sample.
        lower_bound (int): The minimum number of features to sample.
        strategy (str): The sampling strategy to use. Can be either "random" or "sequential".

    Returns:
        dict[str, torch.Tensor]: A dict containing the sampled MSA features.
    """
    msa_len = feat_dict["msa"].size(dim=dim_dict["msa"])
    indices = sample_indices(
        n=msa_len,
        device=feat_dict["msa"].device,
        lower_bound=lower_bound,
        strategy=strategy,
    )
    if cutoff > 0:
        indices = indices[:cutoff]

    msa_feat_dict = {
        feat_name: torch.index_select(
            input=feat_dict[feat_name], dim=dim, index=indices
        )
        for feat_name, dim in dim_dict.items()
    }
    return msa_feat_dict


def expand_at_dim(x: torch.Tensor, dim: int, n: int) -> torch.Tensor:
    """expand a tensor at specific dim by n times

    Args:
        x (torch.Tensor): input
        dim (int): dimension to expand
        n (int): expand size

    Returns:
        torch.Tensor: expanded tensor of shape [..., n, ...]
    """
    x = x.unsqueeze(dim=dim)
    if dim < 0:
        dim = x.dim() + dim
    before_shape = x.shape[:dim]
    after_shape = x.shape[dim + 1 :]
    return x.expand(*before_shape, n, *after_shape)


def pad_at_dim(
    x: torch.Tensor,
    dim: int,
    pad_length: Union[tuple[int], list[int]],
    value: float = 0,
) -> torch.Tensor:
    """pad to input x at dimension dim with length pad_length[0] to the left and and pad_length[1] to the right.

    Args:
        x (torch.Tensor): input
        dim (int): padding dimension
        pad_length (Union[Tuple[int], List[int]]): length to pad to the beginning and end.

    Returns:
        torch.Tensor: padded tensor
    """
    n_dim = len(x.shape)
    if dim < 0:
        dim = n_dim + dim

    pad = (pad_length[0], pad_length[1])
    if pad == (0, 0):
        return x
    k = n_dim - (dim + 1)
    if k > 0:
        pad_skip = (0, 0) * k
        pad = (*pad_skip, *pad)
    return nn.functional.pad(x, pad=pad, value=value)


def reshape_at_dim(
    x: torch.Tensor, dim: int, target_shape: Union[tuple[int], list[int]]
) -> torch.Tensor:
    """reshape dimension dim of x to target_shape

    Args:
        x (torch.Tensor): input
        dim (int): dimension to reshape
        target_shape (Union[Tuple[int], List[int]]): target_shape of dim

    Returns:
        torch.Tensor: reshaped tensor
    """
    n_dim = len(x.shape)
    if dim < 0:
        dim = n_dim + dim

    target_shape = tuple(target_shape)
    target_shape = (*x.shape[:dim], *target_shape)
    if dim + 1 < n_dim:
        target_shape = (*target_shape, *x.shape[dim + 1 :])
    return x.reshape(target_shape)


def move_final_dim_to_dim(x: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Move the final dimension of a tensor to a specified dimension.

    Args:
        x (torch.Tensor): Input tensor.
        dim (int): Target dimension to move the final dimension to.

    Returns:
        torch.Tensor: Tensor with the final dimension moved to the specified dimension.
    """
    # permute_final_dims
    n_dim = len(x.shape)
    if dim < 0:
        dim = n_dim + dim
    if dim >= n_dim - 1:
        return x

    new_order = (n_dim - 1,)
    if dim > 0:
        new_order = tuple(range(dim)) + new_order
    if dim < n_dim - 1:
        new_order = new_order + tuple(range(dim, n_dim - 1))

    return x.permute(new_order)


def simple_merge_dict_list(dict_list: list[dict]) -> dict:
    """
    Merge a list of dictionaries into a single dictionary.

    Args:
        dict_list (list[dict]): List of dictionaries to merge.

    Returns:
        dict: Merged dictionary where values are concatenated arrays.
    """
    merged_dict = {}

    def add(key, value):
        merged_dict.setdefault(key, [])
        if isinstance(value, (float, int)):
            value = np.array([value])
        elif isinstance(value, torch.Tensor):
            if value.dim() == 0:
                value = np.array([value.item()])
            else:
                value = value.detach().cpu().numpy()
        elif isinstance(value, np.ndarray):
            pass
        else:
            raise ValueError(f"Unsupported type for metric data: {type(value)}")
        merged_dict[key].append(value)

    for x in dict_list:
        for k, v in x.items():
            add(k, v)
    for k, v in merged_dict.items():
        merged_dict[k] = np.concatenate(v)
    return merged_dict