File size: 17,949 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pairing logic for multimer data pipeline."""

import collections
from typing import Any, Dict, Iterable, List, Mapping, Sequence

import numpy as np
import pandas as pd
import scipy.linalg

from protenix.openfold_local.np import residue_constants

MSA_GAP_IDX = residue_constants.restypes_with_x_and_gap.index("-")
SEQUENCE_GAP_CUTOFF = 0.5
SEQUENCE_SIMILARITY_CUTOFF = 0.9

MSA_PAD_VALUES = {
    "msa_all_seq": MSA_GAP_IDX,
    "msa_mask_all_seq": 1,
    "deletion_matrix_all_seq": 0,
    "deletion_matrix_int_all_seq": 0,
    "msa": MSA_GAP_IDX,
    "msa_mask": 1,
    "deletion_matrix": 0,
    "deletion_matrix_int": 0,
}

MSA_FEATURES = ("msa", "msa_mask", "deletion_matrix", "deletion_matrix_int")
SEQ_FEATURES = (
    "residue_index",
    "aatype",
    "all_atom_positions",
    "all_atom_mask",
    "seq_mask",
    "between_segment_residues",
    "has_alt_locations",
    "has_hetatoms",
    "asym_id",
    "entity_id",
    "sym_id",
    "entity_mask",
    "deletion_mean",
    "prediction_atom_mask",
    "literature_positions",
    "atom_indices_to_group_indices",
    "rigid_group_default_frame",
)
TEMPLATE_FEATURES = (
    "template_aatype",
    "template_all_atom_positions",
    "template_all_atom_mask",
)
CHAIN_FEATURES = ("num_alignments", "seq_length")


def create_paired_features(
    chains: Iterable[Mapping[str, np.ndarray]],
) -> list[Mapping[str, np.ndarray]]:
    """Returns the original chains with paired NUM_SEQ features.

    Args:
      chains:  A list of feature dictionaries for each chain.

    Returns:
      A list of feature dictionaries with sequence features including only
      rows to be paired.
    """
    chains = list(chains)
    chain_keys = chains[0].keys()

    if len(chains) < 2:
        return chains
    else:
        updated_chains = []
        paired_chains_to_paired_row_indices = pair_sequences(chains)
        paired_rows = reorder_paired_rows(paired_chains_to_paired_row_indices)

        for chain_num, chain in enumerate(chains):
            new_chain = {k: v for k, v in chain.items() if "_all_seq" not in k}
            for feature_name in chain_keys:
                if feature_name.endswith("_all_seq"):
                    feats_padded = pad_features(chain[feature_name], feature_name)
                    new_chain[feature_name] = feats_padded[paired_rows[:, chain_num]]
            new_chain["num_alignments_all_seq"] = np.asarray(
                len(paired_rows[:, chain_num])
            )
            updated_chains.append(new_chain)
        return updated_chains


def pad_features(feature: np.ndarray, feature_name: str) -> np.ndarray:
    """Add a 'padding' row at the end of the features list.

    The padding row will be selected as a 'paired' row in the case of partial
    alignment - for the chain that doesn't have paired alignment.

    Args:
      feature: The feature to be padded.
      feature_name: The name of the feature to be padded.

    Returns:
      The feature with an additional padding row.
    """
    assert feature.dtype != np.dtype(np.string_)
    if feature_name in (
        "msa_all_seq",
        "msa_mask_all_seq",
        "deletion_matrix_all_seq",
        "deletion_matrix_int_all_seq",
    ):
        num_res = feature.shape[1]
        padding = MSA_PAD_VALUES[feature_name] * np.ones([1, num_res], feature.dtype)
    elif feature_name == "msa_species_identifiers_all_seq":
        padding = [b""]
    else:
        return feature
    feats_padded = np.concatenate([feature, padding], axis=0)
    return feats_padded


def _make_msa_df(chain_features: Mapping[str, np.ndarray]) -> pd.DataFrame:
    """Makes dataframe with msa features needed for msa pairing."""
    chain_msa = chain_features["msa_all_seq"]
    query_seq = chain_msa[0]
    per_seq_similarity = np.sum(query_seq[None] == chain_msa, axis=-1) / float(
        len(query_seq)
    )
    per_seq_gap = np.sum(chain_msa == 21, axis=-1) / float(len(query_seq))
    msa_df = pd.DataFrame(
        {
            "msa_species_identifiers": chain_features[
                "msa_species_identifiers_all_seq"
            ],
            "msa_row": np.arange(
                len(chain_features["msa_species_identifiers_all_seq"])
            ),
            "msa_similarity": per_seq_similarity,
            "gap": per_seq_gap,
        }
    )
    return msa_df


def _create_species_dict(msa_df: pd.DataFrame) -> dict[bytes, pd.DataFrame]:
    """Creates mapping from species to msa dataframe of that species."""
    species_lookup = {}
    for species, species_df in msa_df.groupby("msa_species_identifiers"):
        species_lookup[species] = species_df
    return species_lookup


def _match_rows_by_sequence_similarity(
    this_species_msa_dfs: List[pd.DataFrame],
) -> list[List[int]]:
    """Finds MSA sequence pairings across chains based on sequence similarity.

    Each chain's MSA sequences are first sorted by their sequence similarity to
    their respective target sequence. The sequences are then paired, starting
    from the sequences most similar to their target sequence.

    Args:
      this_species_msa_dfs: a list of dataframes containing MSA features for
        sequences for a specific species.

    Returns:
     A list of lists, each containing M indices corresponding to paired MSA rows,
     where M is the number of chains.
    """
    all_paired_msa_rows = []

    num_seqs = [
        len(species_df) for species_df in this_species_msa_dfs if species_df is not None
    ]
    take_num_seqs = np.min(num_seqs)

    sort_by_similarity = lambda x: x.sort_values(
        "msa_similarity", axis=0, ascending=False
    )

    for species_df in this_species_msa_dfs:
        if species_df is not None:
            species_df_sorted = sort_by_similarity(species_df)
            msa_rows = species_df_sorted.msa_row.iloc[:take_num_seqs].values
        else:
            msa_rows = [-1] * take_num_seqs  # take the last 'padding' row
        all_paired_msa_rows.append(msa_rows)
    all_paired_msa_rows = list(np.array(all_paired_msa_rows).transpose())
    return all_paired_msa_rows


def pair_sequences(
    examples: List[Mapping[str, np.ndarray]],
) -> dict[int, np.ndarray]:
    """Returns indices for paired MSA sequences across chains."""

    num_examples = len(examples)

    all_chain_species_dict = []
    common_species = set()
    for chain_features in examples:
        msa_df = _make_msa_df(chain_features)
        species_dict = _create_species_dict(msa_df)
        all_chain_species_dict.append(species_dict)
        common_species.update(set(species_dict))

    common_species = sorted(common_species)
    common_species.remove(b"")  # Remove target sequence species.

    all_paired_msa_rows = [np.zeros(len(examples), int)]
    all_paired_msa_rows_dict = {k: [] for k in range(num_examples)}
    all_paired_msa_rows_dict[num_examples] = [np.zeros(len(examples), int)]

    for species in common_species:
        if not species:
            continue
        this_species_msa_dfs = []
        species_dfs_present = 0
        for species_dict in all_chain_species_dict:
            if species in species_dict:
                this_species_msa_dfs.append(species_dict[species])
                species_dfs_present += 1
            else:
                this_species_msa_dfs.append(None)

        # Skip species that are present in only one chain.
        if species_dfs_present <= 1:
            continue

        if np.any(
            np.array(
                [
                    len(species_df)
                    for species_df in this_species_msa_dfs
                    if isinstance(species_df, pd.DataFrame)
                ]
            )
            > 600
        ):
            continue

        paired_msa_rows = _match_rows_by_sequence_similarity(this_species_msa_dfs)
        all_paired_msa_rows.extend(paired_msa_rows)
        all_paired_msa_rows_dict[species_dfs_present].extend(paired_msa_rows)
    all_paired_msa_rows_dict = {
        num_examples: np.array(paired_msa_rows)
        for num_examples, paired_msa_rows in all_paired_msa_rows_dict.items()
    }
    return all_paired_msa_rows_dict


def reorder_paired_rows(all_paired_msa_rows_dict: dict[int, np.ndarray]) -> np.ndarray:
    """Creates a list of indices of paired MSA rows across chains.

    Args:
      all_paired_msa_rows_dict: a mapping from the number of paired chains to the
        paired indices.

    Returns:
      a list of lists, each containing indices of paired MSA rows across chains.
      The paired-index lists are ordered by:
        1) the number of chains in the paired alignment, i.e, all-chain pairings
           will come first.
        2) e-values
    """
    all_paired_msa_rows = []

    for num_pairings in sorted(all_paired_msa_rows_dict, reverse=True):
        paired_rows = all_paired_msa_rows_dict[num_pairings]
        paired_rows_product = abs(np.array([np.prod(rows) for rows in paired_rows]))
        paired_rows_sort_index = np.argsort(paired_rows_product)
        all_paired_msa_rows.extend(paired_rows[paired_rows_sort_index])

    return np.array(all_paired_msa_rows)


def block_diag(*arrs: np.ndarray, pad_value: float = 0.0) -> np.ndarray:
    """Like scipy.linalg.block_diag but with an optional padding value."""
    ones_arrs = [np.ones_like(x) for x in arrs]
    off_diag_mask = 1.0 - scipy.linalg.block_diag(*ones_arrs)
    diag = scipy.linalg.block_diag(*arrs)
    diag += (off_diag_mask * pad_value).astype(diag.dtype)
    return diag


def _correct_post_merged_feats(
    np_example: Mapping[str, np.ndarray],
    np_chains_list: Sequence[Mapping[str, np.ndarray]],
    pair_msa_sequences: bool,
) -> Mapping[str, np.ndarray]:
    """Adds features that need to be computed/recomputed post merging."""

    np_example["seq_length"] = np.asarray(np_example["aatype"].shape[0], dtype=np.int32)
    np_example["num_alignments"] = np.asarray(
        np_example["msa"].shape[0], dtype=np.int32
    )

    if not pair_msa_sequences:
        # Generate a bias that is 1 for the first row of every block in the
        # block diagonal MSA - i.e. make sure the cluster stack always includes
        # the query sequences for each chain (since the first row is the query
        # sequence).
        cluster_bias_masks = []
        for chain in np_chains_list:
            mask = np.zeros(chain["msa"].shape[0])
            mask[0] = 1
            cluster_bias_masks.append(mask)

        np_example["cluster_bias_mask"] = np.concatenate(cluster_bias_masks)

        # Initialize Bert mask with masked out off diagonals.
        msa_masks = [np.ones(x["msa"].shape, dtype=np.float32) for x in np_chains_list]

        np_example["bert_mask"] = block_diag(*msa_masks, pad_value=0)
    else:
        np_example["cluster_bias_mask"] = np.zeros(np_example["msa"].shape[0])
        np_example["cluster_bias_mask"][0] = 1

        # Initialize Bert mask with masked out off diagonals.
        msa_masks = [np.ones(x["msa"].shape, dtype=np.float32) for x in np_chains_list]
        msa_masks_all_seq = [
            np.ones(x["msa_all_seq"].shape, dtype=np.float32) for x in np_chains_list
        ]

        msa_mask_block_diag = block_diag(*msa_masks, pad_value=0)
        msa_mask_all_seq = np.concatenate(msa_masks_all_seq, axis=1)
        np_example["bert_mask"] = np.concatenate(
            [msa_mask_all_seq, msa_mask_block_diag], axis=0
        )

    return np_example


def _pad_templates(
    chains: Sequence[Mapping[str, np.ndarray]], max_templates: int
) -> Sequence[Mapping[str, np.ndarray]]:
    """For each chain pad the number of templates to a fixed size.

    Args:
      chains: A list of protein chains.
      max_templates: Each chain will be padded to have this many templates.

    Returns:
      The list of chains, updated to have template features padded to
      max_templates.
    """
    for chain in chains:
        for k, v in chain.items():
            if k in TEMPLATE_FEATURES:
                padding = np.zeros_like(v.shape)
                padding[0] = max_templates - v.shape[0]
                padding = [(0, p) for p in padding]
                chain[k] = np.pad(v, padding, mode="constant")
    return chains


def _merge_features_from_multiple_chains(
    chains: Sequence[Mapping[str, np.ndarray]], pair_msa_sequences: bool
) -> Mapping[str, np.ndarray]:
    """Merge features from multiple chains.

    Args:
      chains: A list of feature dictionaries that we want to merge.
      pair_msa_sequences: Whether to concatenate MSA features along the
        num_res dimension (if True), or to block diagonalize them (if False).

    Returns:
      A feature dictionary for the merged example.
    """
    merged_example = {}
    for feature_name in chains[0]:
        feats = [x[feature_name] for x in chains]
        feature_name_split = feature_name.split("_all_seq")[0]
        if feature_name_split in MSA_FEATURES:
            if pair_msa_sequences or "_all_seq" in feature_name:
                merged_example[feature_name] = np.concatenate(feats, axis=1)
            else:
                merged_example[feature_name] = block_diag(
                    *feats, pad_value=MSA_PAD_VALUES[feature_name]
                )
        elif feature_name_split in SEQ_FEATURES:
            merged_example[feature_name] = np.concatenate(feats, axis=0)
        elif feature_name_split in TEMPLATE_FEATURES:
            merged_example[feature_name] = np.concatenate(feats, axis=1)
        elif feature_name_split in CHAIN_FEATURES:
            merged_example[feature_name] = np.sum(x for x in feats).astype(np.int32)
        else:
            merged_example[feature_name] = feats[0]
    return merged_example


def _merge_homomers_dense_msa(
    chains: Iterable[Mapping[str, np.ndarray]]
) -> Sequence[Mapping[str, np.ndarray]]:
    """Merge all identical chains, making the resulting MSA dense.

    Args:
      chains: An iterable of features for each chain.

    Returns:
      A list of feature dictionaries.  All features with the same entity_id
      will be merged - MSA features will be concatenated along the num_res
      dimension - making them dense.
    """
    entity_chains = collections.defaultdict(list)
    for chain in chains:
        entity_id = chain["entity_id"][0]
        entity_chains[entity_id].append(chain)

    grouped_chains = []
    for entity_id in sorted(entity_chains):
        chains = entity_chains[entity_id]
        grouped_chains.append(chains)
    chains = [
        _merge_features_from_multiple_chains(chains, pair_msa_sequences=True)
        for chains in grouped_chains
    ]
    return chains


def _concatenate_paired_and_unpaired_features(
    example: Mapping[str, np.ndarray]
) -> Mapping[str, np.ndarray]:
    """Merges paired and block-diagonalised features."""
    features = MSA_FEATURES
    for feature_name in features:
        if feature_name in example:
            feat = example[feature_name]
            feat_all_seq = example[feature_name + "_all_seq"]
            merged_feat = np.concatenate([feat_all_seq, feat], axis=0)
            example[feature_name] = merged_feat
    example["num_alignments"] = np.array(example["msa"].shape[0], dtype=np.int32)
    return example


def merge_chain_features(
    np_chains_list: List[Mapping[str, np.ndarray]],
    pair_msa_sequences: bool,
    max_templates: int,
) -> Mapping[str, np.ndarray]:
    """Merges features for multiple chains to single FeatureDict.

    Args:
      np_chains_list: List of FeatureDicts for each chain.
      pair_msa_sequences: Whether to merge paired MSAs.
      max_templates: The maximum number of templates to include.

    Returns:
      Single FeatureDict for entire complex.
    """
    np_chains_list = _pad_templates(np_chains_list, max_templates=max_templates)
    np_chains_list = _merge_homomers_dense_msa(np_chains_list)
    # Unpaired MSA features will be always block-diagonalised; paired MSA
    # features will be concatenated.
    np_example = _merge_features_from_multiple_chains(
        np_chains_list, pair_msa_sequences=False
    )
    if pair_msa_sequences:
        np_example = _concatenate_paired_and_unpaired_features(np_example)
    np_example = _correct_post_merged_feats(
        np_example=np_example,
        np_chains_list=np_chains_list,
        pair_msa_sequences=pair_msa_sequences,
    )

    return np_example


def deduplicate_unpaired_sequences(
    np_chains: List[Mapping[str, np.ndarray]]
) -> list[Mapping[str, np.ndarray]]:
    """Removes unpaired sequences which duplicate a paired sequence."""

    feature_names = np_chains[0].keys()
    msa_features = MSA_FEATURES

    for chain in np_chains:
        # Convert the msa_all_seq numpy array to a tuple for hashing.
        sequence_set = set(tuple(s) for s in chain["msa_all_seq"])
        keep_rows = []
        # Go through unpaired MSA seqs and remove any rows that correspond to the
        # sequences that are already present in the paired MSA.
        for row_num, seq in enumerate(chain["msa"]):
            if tuple(seq) not in sequence_set:
                keep_rows.append(row_num)
        for feature_name in feature_names:
            if feature_name in msa_features:
                chain[feature_name] = chain[feature_name][keep_rows]
        chain["num_alignments"] = np.array(chain["msa"].shape[0], dtype=np.int32)
    return np_chains