File size: 23,461 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for parsing various file formats."""
import collections
import dataclasses
import itertools
import re
import string
from typing import Dict, Iterable, List, Optional, Sequence, Set, Tuple

DeletionMatrix = Sequence[Sequence[int]]


@dataclasses.dataclass(frozen=True)
class Msa:
    """Class representing a parsed MSA file"""

    sequences: Sequence[str]
    deletion_matrix: DeletionMatrix
    descriptions: Optional[Sequence[str]]

    def __post_init__(self):
        if not (
            len(self.sequences) == len(self.deletion_matrix) == len(self.descriptions)
        ):
            raise ValueError("All fields for an MSA must have the same length")

    def __len__(self):
        return len(self.sequences)

    def truncate(self, max_seqs: int):
        return Msa(
            sequences=self.sequences[:max_seqs],
            deletion_matrix=self.deletion_matrix[:max_seqs],
            descriptions=self.descriptions[:max_seqs],
        )


@dataclasses.dataclass(frozen=True)
class TemplateHit:
    """Class representing a template hit."""

    index: int
    name: str
    aligned_cols: int
    sum_probs: Optional[float]
    query: str
    hit_sequence: str
    indices_query: List[int]
    indices_hit: List[int]


def parse_fasta(fasta_string: str) -> Tuple[Sequence[str], Sequence[str]]:
    """Parses FASTA string and returns list of strings with amino-acid sequences.

    Arguments:
        fasta_string: The string contents of a FASTA file.

    Returns:
        A tuple of two lists:
        * A list of sequences.
        * A list of sequence descriptions taken from the comment lines. In the
            same order as the sequences.
    """
    sequences = []
    descriptions = []
    index = -1
    for line in fasta_string.splitlines():
        line = line.strip()
        if line.startswith(">"):
            index += 1
            descriptions.append(line[1:])  # Remove the '>' at the beginning.
            sequences.append("")
            continue
        elif line.startswith("#"):
            continue
        elif not line:
            continue  # Skip blank lines.
        sequences[index] += line

    return sequences, descriptions


def parse_stockholm(stockholm_string: str) -> Msa:
    """Parses sequences and deletion matrix from stockholm format alignment.

    Args:
        stockholm_string: The string contents of a stockholm file. The first
            sequence in the file should be the query sequence.

    Returns:
        A tuple of:
            * A list of sequences that have been aligned to the query. These
                might contain duplicates.
            * The deletion matrix for the alignment as a list of lists. The element
                at `deletion_matrix[i][j]` is the number of residues deleted from
                the aligned sequence i at residue position j.
            * The names of the targets matched, including the jackhmmer subsequence
                suffix.
    """
    name_to_sequence = collections.OrderedDict()
    for line in stockholm_string.splitlines():
        line = line.strip()
        if not line or line.startswith(("#", "//")):
            continue
        name, sequence = line.split()
        if name not in name_to_sequence:
            name_to_sequence[name] = ""
        name_to_sequence[name] += sequence

    msa = []
    deletion_matrix = []

    query = ""
    keep_columns = []
    for seq_index, sequence in enumerate(name_to_sequence.values()):
        if seq_index == 0:
            # Gather the columns with gaps from the query
            query = sequence
            keep_columns = [i for i, res in enumerate(query) if res != "-"]

        # Remove the columns with gaps in the query from all sequences.
        aligned_sequence = "".join([sequence[c] for c in keep_columns])

        msa.append(aligned_sequence)

        # Count the number of deletions w.r.t. query.
        deletion_vec = []
        deletion_count = 0
        for seq_res, query_res in zip(sequence, query):
            if seq_res != "-" or query_res != "-":
                if query_res == "-":
                    deletion_count += 1
                else:
                    deletion_vec.append(deletion_count)
                    deletion_count = 0
        deletion_matrix.append(deletion_vec)

    return Msa(
        sequences=msa,
        deletion_matrix=deletion_matrix,
        descriptions=list(name_to_sequence.keys()),
    )


def parse_a3m(a3m_string: str) -> Msa:
    """Parses sequences and deletion matrix from a3m format alignment.

    Args:
        a3m_string: The string contents of a a3m file. The first sequence in the
            file should be the query sequence.

    Returns:
        A tuple of:
            * A list of sequences that have been aligned to the query. These
                might contain duplicates.
            * The deletion matrix for the alignment as a list of lists. The element
                at `deletion_matrix[i][j]` is the number of residues deleted from
                the aligned sequence i at residue position j.
    """
    sequences, descriptions = parse_fasta(a3m_string)
    deletion_matrix = []
    for msa_sequence in sequences:
        deletion_vec = []
        deletion_count = 0
        for j in msa_sequence:
            if j.islower():
                deletion_count += 1
            else:
                deletion_vec.append(deletion_count)
                deletion_count = 0
        deletion_matrix.append(deletion_vec)

    # Make the MSA matrix out of aligned (deletion-free) sequences.
    deletion_table = str.maketrans("", "", string.ascii_lowercase)
    aligned_sequences = [s.translate(deletion_table) for s in sequences]
    return Msa(
        sequences=aligned_sequences,
        deletion_matrix=deletion_matrix,
        descriptions=descriptions,
    )


def _convert_sto_seq_to_a3m(
    query_non_gaps: Sequence[bool], sto_seq: str
) -> Iterable[str]:
    for is_query_res_non_gap, sequence_res in zip(query_non_gaps, sto_seq):
        if is_query_res_non_gap:
            yield sequence_res
        elif sequence_res != "-":
            yield sequence_res.lower()


def convert_stockholm_to_a3m(
    stockholm_format: str,
    max_sequences: Optional[int] = None,
    remove_first_row_gaps: bool = True,
) -> str:
    """Converts MSA in Stockholm format to the A3M format."""
    descriptions = {}
    sequences = {}
    reached_max_sequences = False

    for line in stockholm_format.splitlines():
        reached_max_sequences = max_sequences and len(sequences) >= max_sequences
        if line.strip() and not line.startswith(("#", "//")):
            # Ignore blank lines, markup and end symbols - remainder are alignment
            # sequence parts.
            seqname, aligned_seq = line.split(maxsplit=1)
            if seqname not in sequences:
                if reached_max_sequences:
                    continue
                sequences[seqname] = ""
            sequences[seqname] += aligned_seq

    for line in stockholm_format.splitlines():
        if line[:4] == "#=GS":
            # Description row - example format is:
            # #=GS UniRef90_Q9H5Z4/4-78            DE [subseq from] cDNA: FLJ22755 ...
            columns = line.split(maxsplit=3)
            seqname, feature = columns[1:3]
            value = columns[3] if len(columns) == 4 else ""
            if feature != "DE":
                continue
            if reached_max_sequences and seqname not in sequences:
                continue
            descriptions[seqname] = value
            if len(descriptions) == len(sequences):
                break

    # Convert sto format to a3m line by line
    a3m_sequences = {}
    if remove_first_row_gaps:
        # query_sequence is assumed to be the first sequence
        query_sequence = next(iter(sequences.values()))
        query_non_gaps = [res != "-" for res in query_sequence]
    for seqname, sto_sequence in sequences.items():
        # Dots are optional in a3m format and are commonly removed.
        out_sequence = sto_sequence.replace(".", "")
        if remove_first_row_gaps:
            out_sequence = "".join(
                _convert_sto_seq_to_a3m(query_non_gaps, out_sequence)
            )
        a3m_sequences[seqname] = out_sequence

    fasta_chunks = (
        f">{k} {descriptions.get(k, '')}\n{a3m_sequences[k]}" for k in a3m_sequences
    )
    return "\n".join(fasta_chunks) + "\n"  # Include terminating newline.


def _keep_line(line: str, seqnames: Set[str]) -> bool:
    """Function to decide which lines to keep."""
    if not line.strip():
        return True
    if line.strip() == "//":  # End tag
        return True
    if line.startswith("# STOCKHOLM"):  # Start tag
        return True
    if line.startswith("#=GC RF"):  # Reference Annotation Line
        return True
    if line[:4] == "#=GS":  # Description lines - keep if sequence in list.
        _, seqname, _ = line.split(maxsplit=2)
        return seqname in seqnames
    elif line.startswith("#"):  # Other markup - filter out
        return False
    else:  # Alignment data - keep if sequence in list.
        seqname = line.partition(" ")[0]
        return seqname in seqnames


def truncate_stockholm_msa(stockholm_msa_path: str, max_sequences: int) -> str:
    """Reads + truncates a Stockholm file while preventing excessive RAM usage."""
    seqnames = set()
    filtered_lines = []

    with open(stockholm_msa_path) as f:
        for line in f:
            if line.strip() and not line.startswith(("#", "//")):
                # Ignore blank lines, markup and end symbols - remainder are alignment
                # sequence parts.
                seqname = line.partition(" ")[0]
                seqnames.add(seqname)
                if len(seqnames) >= max_sequences:
                    break

        f.seek(0)
        for line in f:
            if _keep_line(line, seqnames):
                filtered_lines.append(line)

    return "".join(filtered_lines)


def remove_empty_columns_from_stockholm_msa(stockholm_msa: str) -> str:
    """Removes empty columns (dashes-only) from a Stockholm MSA."""
    processed_lines = {}
    unprocessed_lines = {}
    for i, line in enumerate(stockholm_msa.splitlines()):
        if line.startswith("#=GC RF"):
            reference_annotation_i = i
            reference_annotation_line = line
            # Reached the end of this chunk of the alignment. Process chunk.
            _, _, first_alignment = line.rpartition(" ")
            mask = []
            for j in range(len(first_alignment)):
                for _, unprocessed_line in unprocessed_lines.items():
                    prefix, _, alignment = unprocessed_line.rpartition(" ")
                    if alignment[j] != "-":
                        mask.append(True)
                        break
                else:  # Every row contained a hyphen - empty column.
                    mask.append(False)
            # Add reference annotation for processing with mask.
            unprocessed_lines[reference_annotation_i] = reference_annotation_line

            if not any(mask):  # All columns were empty. Output empty lines for chunk.
                for line_index in unprocessed_lines:
                    processed_lines[line_index] = ""
            else:
                for line_index, unprocessed_line in unprocessed_lines.items():
                    prefix, _, alignment = unprocessed_line.rpartition(" ")
                    masked_alignment = "".join(itertools.compress(alignment, mask))
                    processed_lines[line_index] = f"{prefix} {masked_alignment}"

            # Clear raw_alignments.
            unprocessed_lines = {}
        elif line.strip() and not line.startswith(("#", "//")):
            unprocessed_lines[i] = line
        else:
            processed_lines[i] = line
    return "\n".join((processed_lines[i] for i in range(len(processed_lines))))


def deduplicate_stockholm_msa(stockholm_msa: str) -> str:
    """Remove duplicate sequences (ignoring insertions wrt query)."""
    sequence_dict = collections.defaultdict(str)

    # First we must extract all sequences from the MSA.
    for line in stockholm_msa.splitlines():
        # Only consider the alignments - ignore reference annotation, empty lines,
        # descriptions or markup.
        if line.strip() and not line.startswith(("#", "//")):
            line = line.strip()
            seqname, alignment = line.split()
            sequence_dict[seqname] += alignment

    seen_sequences = set()
    seqnames = set()
    # First alignment is the query.
    query_align = next(iter(sequence_dict.values()))
    mask = [c != "-" for c in query_align]  # Mask is False for insertions.
    for seqname, alignment in sequence_dict.items():
        # Apply mask to remove all insertions from the string.
        masked_alignment = "".join(itertools.compress(alignment, mask))
        if masked_alignment in seen_sequences:
            continue
        else:
            seen_sequences.add(masked_alignment)
            seqnames.add(seqname)

    filtered_lines = []
    for line in stockholm_msa.splitlines():
        if _keep_line(line, seqnames):
            filtered_lines.append(line)

    return "\n".join(filtered_lines) + "\n"


def _get_hhr_line_regex_groups(
    regex_pattern: str, line: str
) -> Sequence[Optional[str]]:
    match = re.match(regex_pattern, line)
    if match is None:
        raise RuntimeError(f"Could not parse query line {line}")
    return match.groups()


def _update_hhr_residue_indices_list(
    sequence: str, start_index: int, indices_list: List[int]
):
    """Computes the relative indices for each residue with respect to the original sequence."""
    counter = start_index
    for symbol in sequence:
        if symbol == "-":
            indices_list.append(-1)
        else:
            indices_list.append(counter)
            counter += 1


def _parse_hhr_hit(detailed_lines: Sequence[str]) -> TemplateHit:
    """Parses the detailed HMM HMM comparison section for a single Hit.

    This works on .hhr files generated from both HHBlits and HHSearch.

    Args:
        detailed_lines: A list of lines from a single comparison section between 2
            sequences (which each have their own HMM's)

    Returns:
        A dictionary with the information from that detailed comparison section

    Raises:
        RuntimeError: If a certain line cannot be processed
    """
    # Parse first 2 lines.
    number_of_hit = int(detailed_lines[0].split()[-1])
    name_hit = detailed_lines[1][1:]

    # Parse the summary line.
    pattern = (
        "Probab=(.*)[\t ]*E-value=(.*)[\t ]*Score=(.*)[\t ]*Aligned_cols=(.*)[\t"
        " ]*Identities=(.*)%[\t ]*Similarity=(.*)[\t ]*Sum_probs=(.*)[\t "
        "]*Template_Neff=(.*)"
    )
    match = re.match(pattern, detailed_lines[2])
    if match is None:
        raise RuntimeError(
            "Could not parse section: %s. Expected this: \n%s to contain summary."
            % (detailed_lines, detailed_lines[2])
        )
    (_, _, _, aligned_cols, _, _, sum_probs, _) = [float(x) for x in match.groups()]

    # The next section reads the detailed comparisons. These are in a 'human
    # readable' format which has a fixed length. The strategy employed is to
    # assume that each block starts with the query sequence line, and to parse
    # that with a regexp in order to deduce the fixed length used for that block.
    query = ""
    hit_sequence = ""
    indices_query = []
    indices_hit = []
    length_block = None

    for line in detailed_lines[3:]:
        # Parse the query sequence line
        if (
            line.startswith("Q ")
            and not line.startswith("Q ss_dssp")
            and not line.startswith("Q ss_pred")
            and not line.startswith("Q Consensus")
        ):
            # Thus the first 17 characters must be 'Q <query_name> ', and we can parse
            # everything after that.
            #              start    sequence       end       total_sequence_length
            patt = r"[\t ]*([0-9]*) ([A-Z-]*)[\t ]*([0-9]*) \([0-9]*\)"
            groups = _get_hhr_line_regex_groups(patt, line[17:])

            # Get the length of the parsed block using the start and finish indices,
            # and ensure it is the same as the actual block length.
            start = int(groups[0]) - 1  # Make index zero based.
            delta_query = groups[1]
            end = int(groups[2])
            num_insertions = len([x for x in delta_query if x == "-"])
            length_block = end - start + num_insertions
            assert length_block == len(delta_query)

            # Update the query sequence and indices list.
            query += delta_query
            _update_hhr_residue_indices_list(delta_query, start, indices_query)

        elif line.startswith("T "):
            # Parse the hit sequence.
            if (
                not line.startswith("T ss_dssp")
                and not line.startswith("T ss_pred")
                and not line.startswith("T Consensus")
            ):
                # Thus the first 17 characters must be 'T <hit_name> ', and we can
                # parse everything after that.
                #              start    sequence       end     total_sequence_length
                patt = r"[\t ]*([0-9]*) ([A-Z-]*)[\t ]*[0-9]* \([0-9]*\)"
                groups = _get_hhr_line_regex_groups(patt, line[17:])
                start = int(groups[0]) - 1  # Make index zero based.
                delta_hit_sequence = groups[1]
                assert length_block == len(delta_hit_sequence)

                # Update the hit sequence and indices list.
                hit_sequence += delta_hit_sequence
                _update_hhr_residue_indices_list(delta_hit_sequence, start, indices_hit)

    return TemplateHit(
        index=number_of_hit,
        name=name_hit,
        aligned_cols=int(aligned_cols),
        sum_probs=sum_probs,
        query=query,
        hit_sequence=hit_sequence,
        indices_query=indices_query,
        indices_hit=indices_hit,
    )


def parse_hhr(hhr_string: str) -> Sequence[TemplateHit]:
    """Parses the content of an entire HHR file."""
    lines = hhr_string.splitlines()

    # Each .hhr file starts with a results table, then has a sequence of hit
    # "paragraphs", each paragraph starting with a line 'No <hit number>'. We
    # iterate through each paragraph to parse each hit.

    block_starts = [i for i, line in enumerate(lines) if line.startswith("No ")]

    hits = []
    if block_starts:
        block_starts.append(len(lines))  # Add the end of the final block.
        for i in range(len(block_starts) - 1):
            hits.append(_parse_hhr_hit(lines[block_starts[i] : block_starts[i + 1]]))
    return hits


def parse_e_values_from_tblout(tblout: str) -> dict[str, float]:
    """Parse target to e-value mapping parsed from Jackhmmer tblout string."""
    e_values = {"query": 0}
    lines = [line for line in tblout.splitlines() if line[0] != "#"]
    # As per http://eddylab.org/software/hmmer/Userguide.pdf fields are
    # space-delimited. Relevant fields are (1) target name:  and
    # (5) E-value (full sequence) (numbering from 1).
    for line in lines:
        fields = line.split()
        e_value = fields[4]
        target_name = fields[0]
        e_values[target_name] = float(e_value)
    return e_values


def _get_indices(sequence: str, start: int) -> list[int]:
    """Returns indices for non-gap/insert residues starting at the given index."""
    indices = []
    counter = start
    for symbol in sequence:
        # Skip gaps but add a placeholder so that the alignment is preserved.
        if symbol == "-":
            indices.append(-1)
        # Skip deleted residues, but increase the counter.
        elif symbol.islower():
            counter += 1
        # Normal aligned residue. Increase the counter and append to indices.
        else:
            indices.append(counter)
            counter += 1
    return indices


@dataclasses.dataclass(frozen=True)
class HitMetadata:
    pdb_id: str
    chain: str
    start: int
    end: int
    length: int
    text: str


def _parse_hmmsearch_description(description: str) -> HitMetadata:
    """Parses the hmmsearch A3M sequence description line."""
    # Example 1: >4pqx_A/2-217 [subseq from] mol:protein length:217  Free text
    # Example 2: >5g3r_A/1-55 [subseq from] mol:protein length:352
    match = re.match(
        r"^>?([a-z0-9]+)_(\w+)/([0-9]+)-([0-9]+).*protein length:([0-9]+) *(.*)$",
        description.strip(),
    )

    if not match:
        raise ValueError(f'Could not parse description: "{description}".')

    return HitMetadata(
        pdb_id=match[1],
        chain=match[2],
        start=int(match[3]),
        end=int(match[4]),
        length=int(match[5]),
        text=match[6],
    )


def parse_hmmsearch_a3m(
    query_sequence: str, a3m_string: str, skip_first: bool = True
) -> Sequence[TemplateHit]:
    """Parses an a3m string produced by hmmsearch.

    Args:
      query_sequence: The query sequence.
      a3m_string: The a3m string produced by hmmsearch.
      skip_first: Whether to skip the first sequence in the a3m string.

    Returns:
      A sequence of `TemplateHit` results.
    """
    # Zip the descriptions and MSAs together, skip the first query sequence.
    parsed_a3m = list(zip(*parse_fasta(a3m_string)))
    if skip_first:
        parsed_a3m = parsed_a3m[1:]

    indices_query = _get_indices(query_sequence, start=0)

    hits = []
    for i, (hit_sequence, hit_description) in enumerate(parsed_a3m, start=1):
        if "mol:protein" not in hit_description:
            continue  # Skip non-protein chains.
        metadata = _parse_hmmsearch_description(hit_description)
        # Aligned columns are only the match states.
        aligned_cols = sum([r.isupper() and r != "-" for r in hit_sequence])
        indices_hit = _get_indices(hit_sequence, start=metadata.start - 1)

        hit = TemplateHit(
            index=i,
            name=f"{metadata.pdb_id}_{metadata.chain}",
            aligned_cols=aligned_cols,
            sum_probs=None,
            query=query_sequence,
            hit_sequence=hit_sequence.upper(),
            indices_query=indices_query,
            indices_hit=indices_hit,
        )
        hits.append(hit)

    return hits


def parse_hmmsearch_sto(
    output_string: str, input_sequence: str
) -> Sequence[TemplateHit]:
    """Gets parsed template hits from the raw string output by the tool."""
    a3m_string = convert_stockholm_to_a3m(output_string, remove_first_row_gaps=False)
    template_hits = parse_hmmsearch_a3m(
        query_sequence=input_sequence, a3m_string=a3m_string, skip_first=False
    )
    return template_hits