File size: 18,005 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ops for all atom representations."""
from functools import partial
from typing import Dict, Text, Tuple
import numpy as np
import torch
from protenix.openfold_local.np import residue_constants as rc
from protenix.openfold_local.utils import geometry, tensor_utils
from protenix.openfold_local.utils.geometry.rigid_matrix_vector import Rigid3Array
def squared_difference(x, y):
return np.square(x - y)
def get_rc_tensor(rc_np, aatype):
return torch.tensor(rc_np, device=aatype.device)[aatype]
def atom14_to_atom37(
atom14_data: torch.Tensor, aatype: torch.Tensor # (*, N, 14, ...) # (*, N)
) -> Tuple: # (*, N, 37, ...)
"""Convert atom14 to atom37 representation."""
idx_atom37_to_atom14 = get_rc_tensor(rc.RESTYPE_ATOM37_TO_ATOM14, aatype).long()
no_batch_dims = len(aatype.shape) - 1
atom37_data = tensor_utils.batched_gather(
atom14_data,
idx_atom37_to_atom14,
dim=no_batch_dims + 1,
no_batch_dims=no_batch_dims + 1,
)
atom37_mask = get_rc_tensor(rc.RESTYPE_ATOM37_MASK, aatype)
if len(atom14_data.shape) == no_batch_dims + 2:
atom37_data *= atom37_mask
elif len(atom14_data.shape) == no_batch_dims + 3:
atom37_data *= atom37_mask[..., None].to(dtype=atom37_data.dtype)
else:
raise ValueError("Incorrectly shaped data")
return atom37_data, atom37_mask
def atom37_to_atom14(aatype, all_atom_pos, all_atom_mask):
"""Convert Atom37 positions to Atom14 positions."""
residx_atom14_to_atom37 = get_rc_tensor(rc.RESTYPE_ATOM14_TO_ATOM37, aatype)
no_batch_dims = len(aatype.shape)
atom14_mask = tensor_utils.batched_gather(
all_atom_mask,
residx_atom14_to_atom37,
dim=no_batch_dims + 1,
no_batch_dims=no_batch_dims + 1,
).to(all_atom_pos.dtype)
# create a mask for known groundtruth positions
atom14_mask *= get_rc_tensor(rc.RESTYPE_ATOM14_MASK, aatype)
# gather the groundtruth positions
atom14_positions = (
tensor_utils.batched_gather(
all_atom_pos,
residx_atom14_to_atom37,
dim=no_batch_dims + 1,
no_batch_dims=no_batch_dims + 1,
),
)
atom14_positions = atom14_mask * atom14_positions
return atom14_positions, atom14_mask
def get_alt_atom14(aatype, positions: torch.Tensor, mask):
"""Get alternative atom14 positions."""
# pick the transformation matrices for the given residue sequence
# shape (num_res, 14, 14)
renaming_transform = get_rc_tensor(rc.RENAMING_MATRICES, aatype)
alternative_positions = torch.sum(
positions[..., None, :] * renaming_transform[..., None], dim=-2
)
# Create the mask for the alternative ground truth (differs from the
# ground truth mask, if only one of the atoms in an ambiguous pair has a
# ground truth position)
alternative_mask = torch.sum(mask[..., None] * renaming_transform, dim=-2)
return alternative_positions, alternative_mask
def atom37_to_frames(
aatype: torch.Tensor, # (...)
all_atom_positions: torch.Tensor, # (..., 37)
all_atom_mask: torch.Tensor, # (..., 37)
) -> dict[Text, torch.Tensor]:
"""Computes the frames for the up to 8 rigid groups for each residue."""
# 0: 'backbone group',
# 1: 'pre-omega-group', (empty)
# 2: 'phi-group', (currently empty, because it defines only hydrogens)
# 3: 'psi-group',
# 4,5,6,7: 'chi1,2,3,4-group'
no_batch_dims = len(aatype.shape) - 1
# Compute the gather indices for all residues in the chain.
# shape (N, 8, 3)
residx_rigidgroup_base_atom37_idx = get_rc_tensor(
rc.RESTYPE_RIGIDGROUP_BASE_ATOM37_IDX, aatype
)
# Gather the base atom positions for each rigid group.
base_atom_pos = tensor_utils.batched_gather(
all_atom_positions,
residx_rigidgroup_base_atom37_idx,
dim=no_batch_dims + 1,
batch_dims=no_batch_dims + 1,
)
# Compute the Rigids.
point_on_neg_x_axis = base_atom_pos[..., :, :, 0]
origin = base_atom_pos[..., :, :, 1]
point_on_xy_plane = base_atom_pos[..., :, :, 2]
gt_rotation = geometry.Rot3Array.from_two_vectors(
origin - point_on_neg_x_axis, point_on_xy_plane - origin
)
gt_frames = geometry.Rigid3Array(gt_rotation, origin)
# Compute a mask whether the group exists.
# (N, 8)
group_exists = get_rc_tensor(rc.RESTYPE_RIGIDGROUP_MASK, aatype)
# Compute a mask whether ground truth exists for the group
gt_atoms_exist = tensor_utils.batched_gather( # shape (N, 8, 3)
all_atom_mask.to(dtype=all_atom_positions.dtype),
residx_rigidgroup_base_atom37_idx,
batch_dims=no_batch_dims + 1,
)
gt_exists = torch.min(gt_atoms_exist, dim=-1) * group_exists # (N, 8)
# Adapt backbone frame to old convention (mirror x-axis and z-axis).
rots = np.tile(np.eye(3, dtype=all_atom_positions.dtype), [8, 1, 1])
rots[0, 0, 0] = -1
rots[0, 2, 2] = -1
gt_frames = gt_frames.compose_rotation(
geometry.Rot3Array.from_array(torch.tensor(rots, device=aatype.device))
)
# The frames for ambiguous rigid groups are just rotated by 180 degree around
# the x-axis. The ambiguous group is always the last chi-group.
restype_rigidgroup_is_ambiguous = np.zeros([21, 8], dtype=all_atom_positions.dtype)
restype_rigidgroup_rots = np.tile(
np.eye(3, dtype=all_atom_positions.dtype), [21, 8, 1, 1]
)
for resname, _ in rc.residue_atom_renaming_swaps.items():
restype = rc.restype_order[rc.restype_3to1[resname]]
chi_idx = int(sum(rc.chi_angles_mask[restype]) - 1)
restype_rigidgroup_is_ambiguous[restype, chi_idx + 4] = 1
restype_rigidgroup_rots[restype, chi_idx + 4, 1, 1] = -1
restype_rigidgroup_rots[restype, chi_idx + 4, 2, 2] = -1
# Gather the ambiguity information for each residue.
residx_rigidgroup_is_ambiguous = torch.tensor(
restype_rigidgroup_is_ambiguous,
device=aatype.device,
)[aatype]
ambiguity_rot = torch.tensor(
restype_rigidgroup_rots,
device=aatype.device,
)[aatype]
ambiguity_rot = geometry.Rot3Array.from_array(
torch.Tensor(ambiguity_rot, device=aatype.device)
)
# Create the alternative ground truth frames.
alt_gt_frames = gt_frames.compose_rotation(ambiguity_rot)
fix_shape = lambda x: x.reshape(x.shape[:-2] + (8,))
# reshape back to original residue layout
gt_frames = fix_shape(gt_frames)
gt_exists = fix_shape(gt_exists)
group_exists = fix_shape(group_exists)
residx_rigidgroup_is_ambiguous = fix_shape(residx_rigidgroup_is_ambiguous)
alt_gt_frames = fix_shape(alt_gt_frames)
return {
"rigidgroups_gt_frames": gt_frames, # Rigid (..., 8)
"rigidgroups_gt_exists": gt_exists, # (..., 8)
"rigidgroups_group_exists": group_exists, # (..., 8)
"rigidgroups_group_is_ambiguous": residx_rigidgroup_is_ambiguous, # (..., 8)
"rigidgroups_alt_gt_frames": alt_gt_frames, # Rigid (..., 8)
}
def torsion_angles_to_frames(
aatype: torch.Tensor, # (N)
backb_to_global: geometry.Rigid3Array, # (N)
torsion_angles_sin_cos: torch.Tensor, # (N, 7, 2)
) -> geometry.Rigid3Array: # (N, 8)
"""Compute rigid group frames from torsion angles."""
# Gather the default frames for all rigid groups.
# geometry.Rigid3Array with shape (N, 8)
m = get_rc_tensor(rc.restype_rigid_group_default_frame, aatype)
default_frames = geometry.Rigid3Array.from_array4x4(m)
# Create the rotation matrices according to the given angles (each frame is
# defined such that its rotation is around the x-axis).
sin_angles = torsion_angles_sin_cos[..., 0]
cos_angles = torsion_angles_sin_cos[..., 1]
# insert zero rotation for backbone group.
num_residues = aatype.shape[-1]
sin_angles = torch.cat(
[
torch.zeros_like(aatype).unsqueeze(dim=-1),
sin_angles,
],
dim=-1,
)
cos_angles = torch.cat(
[torch.ones_like(aatype).unsqueeze(dim=-1), cos_angles], dim=-1
)
zeros = torch.zeros_like(sin_angles)
ones = torch.ones_like(sin_angles)
# all_rots are geometry.Rot3Array with shape (..., N, 8)
all_rots = geometry.Rot3Array(
ones,
zeros,
zeros,
zeros,
cos_angles,
-sin_angles,
zeros,
sin_angles,
cos_angles,
)
# Apply rotations to the frames.
all_frames = default_frames.compose_rotation(all_rots)
# chi2, chi3, and chi4 frames do not transform to the backbone frame but to
# the previous frame. So chain them up accordingly.
chi1_frame_to_backb = all_frames[..., 4]
chi2_frame_to_backb = chi1_frame_to_backb @ all_frames[..., 5]
chi3_frame_to_backb = chi2_frame_to_backb @ all_frames[..., 6]
chi4_frame_to_backb = chi3_frame_to_backb @ all_frames[..., 7]
all_frames_to_backb = Rigid3Array.cat(
[
all_frames[..., 0:5],
chi2_frame_to_backb[..., None],
chi3_frame_to_backb[..., None],
chi4_frame_to_backb[..., None],
],
dim=-1,
)
# Create the global frames.
# shape (N, 8)
all_frames_to_global = backb_to_global[..., None] @ all_frames_to_backb
return all_frames_to_global
def frames_and_literature_positions_to_atom14_pos(
aatype: torch.Tensor, all_frames_to_global: geometry.Rigid3Array # (*, N) # (N, 8)
) -> geometry.Vec3Array: # (*, N, 14)
"""Put atom literature positions (atom14 encoding) in each rigid group."""
# Pick the appropriate transform for every atom.
residx_to_group_idx = get_rc_tensor(rc.restype_atom14_to_rigid_group, aatype)
group_mask = torch.nn.functional.one_hot(
residx_to_group_idx, num_classes=8
) # shape (*, N, 14, 8)
# geometry.Rigid3Array with shape (N, 14)
map_atoms_to_global = all_frames_to_global[..., None, :] * group_mask
map_atoms_to_global = map_atoms_to_global.map_tensor_fn(partial(torch.sum, dim=-1))
# Gather the literature atom positions for each residue.
# geometry.Vec3Array with shape (N, 14)
lit_positions = geometry.Vec3Array.from_array(
get_rc_tensor(rc.restype_atom14_rigid_group_positions, aatype)
)
# Transform each atom from its local frame to the global frame.
# geometry.Vec3Array with shape (N, 14)
pred_positions = map_atoms_to_global.apply_to_point(lit_positions)
# Mask out non-existing atoms.
mask = get_rc_tensor(rc.restype_atom14_mask, aatype)
pred_positions = pred_positions * mask
return pred_positions
def extreme_ca_ca_distance_violations(
positions: geometry.Vec3Array, # (N, 37(14))
mask: torch.Tensor, # (N, 37(14))
residue_index: torch.Tensor, # (N)
max_angstrom_tolerance=1.5,
eps: float = 1e-6,
) -> torch.Tensor:
"""Counts residues whose Ca is a large distance from its neighbor."""
this_ca_pos = positions[..., :-1, 1] # (N - 1,)
this_ca_mask = mask[..., :-1, 1] # (N - 1)
next_ca_pos = positions[..., 1:, 1] # (N - 1,)
next_ca_mask = mask[..., 1:, 1] # (N - 1)
has_no_gap_mask = (
(residue_index[..., 1:] - residue_index[..., :-1]) == 1.0
).astype(positions.x.dtype)
ca_ca_distance = geometry.euclidean_distance(this_ca_pos, next_ca_pos, eps)
violations = (ca_ca_distance - rc.ca_ca) > max_angstrom_tolerance
mask = this_ca_mask * next_ca_mask * has_no_gap_mask
return tensor_utils.masked_mean(mask=mask, value=violations, dim=-1)
def get_chi_atom_indices(device: torch.device):
"""Returns atom indices needed to compute chi angles for all residue types.
Returns:
A tensor of shape [residue_types=21, chis=4, atoms=4]. The residue types are
in the order specified in rc.restypes + unknown residue type
at the end. For chi angles which are not defined on the residue, the
positions indices are by default set to 0.
"""
chi_atom_indices = []
for residue_name in rc.restypes:
residue_name = rc.restype_1to3[residue_name]
residue_chi_angles = rc.chi_angles_atoms[residue_name]
atom_indices = []
for chi_angle in residue_chi_angles:
atom_indices.append([rc.atom_order[atom] for atom in chi_angle])
for _ in range(4 - len(atom_indices)):
atom_indices.append([0, 0, 0, 0]) # For chi angles not defined on the AA.
chi_atom_indices.append(atom_indices)
chi_atom_indices.append([[0, 0, 0, 0]] * 4) # For UNKNOWN residue.
return torch.tensor(chi_atom_indices, device=device)
def compute_chi_angles(
positions: geometry.Vec3Array, mask: torch.Tensor, aatype: torch.Tensor
):
"""Computes the chi angles given all atom positions and the amino acid type.
Args:
positions: A Vec3Array of shape
[num_res, rc.atom_type_num], with positions of
atoms needed to calculate chi angles. Supports up to 1 batch dimension.
mask: An optional tensor of shape
[num_res, rc.atom_type_num] that masks which atom
positions are set for each residue. If given, then the chi mask will be
set to 1 for a chi angle only if the amino acid has that chi angle and all
the chi atoms needed to calculate that chi angle are set. If not given
(set to None), the chi mask will be set to 1 for a chi angle if the amino
acid has that chi angle and whether the actual atoms needed to calculate
it were set will be ignored.
aatype: A tensor of shape [num_res] with amino acid type integer
code (0 to 21). Supports up to 1 batch dimension.
Returns:
A tuple of tensors (chi_angles, mask), where both have shape
[num_res, 4]. The mask masks out unused chi angles for amino acid
types that have less than 4 chi angles. If atom_positions_mask is set, the
chi mask will also mask out uncomputable chi angles.
"""
# Don't assert on the num_res and batch dimensions as they might be unknown.
assert positions.shape[-1] == rc.atom_type_num
assert mask.shape[-1] == rc.atom_type_num
no_batch_dims = len(aatype.shape) - 1
# Compute the table of chi angle indices. Shape: [restypes, chis=4, atoms=4].
chi_atom_indices = get_chi_atom_indices(aatype.device)
# DISCREPANCY: DeepMind doesn't remove the gaps here. I don't know why
# theirs works.
aatype_gapless = torch.clamp(aatype, max=20)
# Select atoms to compute chis. Shape: [*, num_res, chis=4, atoms=4].
atom_indices = chi_atom_indices[aatype_gapless]
# Gather atom positions. Shape: [num_res, chis=4, atoms=4, xyz=3].
chi_angle_atoms = positions.map_tensor_fn(
partial(
tensor_utils.batched_gather,
inds=atom_indices,
dim=-1,
no_batch_dims=no_batch_dims + 1,
)
)
a, b, c, d = [chi_angle_atoms[..., i] for i in range(4)]
chi_angles = geometry.dihedral_angle(a, b, c, d)
# Copy the chi angle mask, add the UNKNOWN residue. Shape: [restypes, 4].
chi_angles_mask = list(rc.chi_angles_mask)
chi_angles_mask.append([0.0, 0.0, 0.0, 0.0])
chi_angles_mask = torch.tensor(chi_angles_mask, device=aatype.device)
# Compute the chi angle mask. Shape [num_res, chis=4].
chi_mask = chi_angles_mask[aatype_gapless]
# The chi_mask is set to 1 only when all necessary chi angle atoms were set.
# Gather the chi angle atoms mask. Shape: [num_res, chis=4, atoms=4].
chi_angle_atoms_mask = tensor_utils.batched_gather(
mask, atom_indices, dim=-1, no_batch_dims=no_batch_dims + 1
)
# Check if all 4 chi angle atoms were set. Shape: [num_res, chis=4].
chi_angle_atoms_mask = torch.prod(chi_angle_atoms_mask, dim=-1)
chi_mask = chi_mask * chi_angle_atoms_mask.to(chi_angles.dtype)
return chi_angles, chi_mask
def make_transform_from_reference(
a_xyz: geometry.Vec3Array, b_xyz: geometry.Vec3Array, c_xyz: geometry.Vec3Array
) -> geometry.Rigid3Array:
"""Returns rotation and translation matrices to convert from reference.
Note that this method does not take care of symmetries. If you provide the
coordinates in the non-standard way, the A atom will end up in the negative
y-axis rather than in the positive y-axis. You need to take care of such
cases in your code.
Args:
a_xyz: A Vec3Array.
b_xyz: A Vec3Array.
c_xyz: A Vec3Array.
Returns:
A Rigid3Array which, when applied to coordinates in a canonicalized
reference frame, will give coordinates approximately equal
the original coordinates (in the global frame).
"""
rotation = geometry.Rot3Array.from_two_vectors(c_xyz - b_xyz, a_xyz - b_xyz)
return geometry.Rigid3Array(rotation, b_xyz)
def make_backbone_affine(
positions: geometry.Vec3Array,
mask: torch.Tensor,
aatype: torch.Tensor,
) -> Tuple[geometry.Rigid3Array, torch.Tensor]:
a = rc.atom_order["N"]
b = rc.atom_order["CA"]
c = rc.atom_order["C"]
rigid_mask = mask[..., a] * mask[..., b] * mask[..., c]
rigid = make_transform_from_reference(
a_xyz=positions[..., a],
b_xyz=positions[..., b],
c_xyz=positions[..., c],
)
return rigid, rigid_mask
|