File size: 8,320 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Dict, Union

import numpy as np
import torch
import torch.nn as nn

import protenix.openfold_local.np.residue_constants as rc
from protenix.openfold_local.utils.geometry import rigid_matrix_vector
from protenix.openfold_local.utils.rigid_utils import Rigid
from protenix.openfold_local.utils.tensor_utils import batched_gather


def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
    is_gly = aatype == rc.restype_order["G"]
    ca_idx = rc.atom_order["CA"]
    cb_idx = rc.atom_order["CB"]
    pseudo_beta = torch.where(
        is_gly[..., None].expand(*((-1,) * len(is_gly.shape)), 3),
        all_atom_positions[..., ca_idx, :],
        all_atom_positions[..., cb_idx, :],
    )

    if all_atom_masks is not None:
        pseudo_beta_mask = torch.where(
            is_gly,
            all_atom_masks[..., ca_idx],
            all_atom_masks[..., cb_idx],
        )
        return pseudo_beta, pseudo_beta_mask
    else:
        return pseudo_beta


def atom14_to_atom37(atom14, batch):
    atom37_data = batched_gather(
        atom14,
        batch["residx_atom37_to_atom14"],
        dim=-2,
        no_batch_dims=len(atom14.shape[:-2]),
    )

    atom37_data = atom37_data * batch["atom37_atom_exists"][..., None]

    return atom37_data


def build_template_angle_feat(template_feats):
    template_aatype = template_feats["template_aatype"]
    torsion_angles_sin_cos = template_feats["template_torsion_angles_sin_cos"]
    alt_torsion_angles_sin_cos = template_feats["template_alt_torsion_angles_sin_cos"]
    torsion_angles_mask = template_feats["template_torsion_angles_mask"]
    template_angle_feat = torch.cat(
        [
            nn.functional.one_hot(template_aatype, 22),
            torsion_angles_sin_cos.reshape(*torsion_angles_sin_cos.shape[:-2], 14),
            alt_torsion_angles_sin_cos.reshape(
                *alt_torsion_angles_sin_cos.shape[:-2], 14
            ),
            torsion_angles_mask,
        ],
        dim=-1,
    )

    return template_angle_feat


def dgram_from_positions(
    pos: torch.Tensor,
    min_bin: float = 3.25,
    max_bin: float = 50.75,
    no_bins: float = 39,
    inf: float = 1e8,
):
    dgram = torch.sum(
        (pos[..., None, :] - pos[..., None, :, :]) ** 2, dim=-1, keepdim=True
    )
    lower = torch.linspace(min_bin, max_bin, no_bins, device=pos.device) ** 2
    upper = torch.cat([lower[1:], lower.new_tensor([inf])], dim=-1)
    dgram = ((dgram > lower) * (dgram < upper)).type(dgram.dtype)

    return dgram


def build_template_pair_feat(
    batch, min_bin, max_bin, no_bins, use_unit_vector=False, eps=1e-20, inf=1e8
):
    template_mask = batch["template_pseudo_beta_mask"]
    template_mask_2d = template_mask[..., None] * template_mask[..., None, :]

    # Compute distogram (this seems to differ slightly from Alg. 5)
    tpb = batch["template_pseudo_beta"]
    dgram = dgram_from_positions(tpb, min_bin, max_bin, no_bins, inf)

    to_concat = [dgram, template_mask_2d[..., None]]

    aatype_one_hot = nn.functional.one_hot(
        batch["template_aatype"],
        rc.restype_num + 2,
    )

    n_res = batch["template_aatype"].shape[-1]
    to_concat.append(
        aatype_one_hot[..., None, :, :].expand(
            *aatype_one_hot.shape[:-2], n_res, -1, -1
        )
    )
    to_concat.append(
        aatype_one_hot[..., None, :].expand(*aatype_one_hot.shape[:-2], -1, n_res, -1)
    )

    n, ca, c = [rc.atom_order[a] for a in ["N", "CA", "C"]]
    rigids = Rigid.make_transform_from_reference(
        n_xyz=batch["template_all_atom_positions"][..., n, :],
        ca_xyz=batch["template_all_atom_positions"][..., ca, :],
        c_xyz=batch["template_all_atom_positions"][..., c, :],
        eps=eps,
    )
    points = rigids.get_trans()[..., None, :, :]
    rigid_vec = rigids[..., None].invert_apply(points)

    inv_distance_scalar = torch.rsqrt(eps + torch.sum(rigid_vec**2, dim=-1))

    t_aa_masks = batch["template_all_atom_mask"]
    template_mask = t_aa_masks[..., n] * t_aa_masks[..., ca] * t_aa_masks[..., c]
    template_mask_2d = template_mask[..., None] * template_mask[..., None, :]

    inv_distance_scalar = inv_distance_scalar * template_mask_2d
    unit_vector = rigid_vec * inv_distance_scalar[..., None]

    if not use_unit_vector:
        unit_vector = unit_vector * 0.0

    to_concat.extend(torch.unbind(unit_vector[..., None, :], dim=-1))
    to_concat.append(template_mask_2d[..., None])

    act = torch.cat(to_concat, dim=-1)
    act = act * template_mask_2d[..., None]

    return act


def build_extra_msa_feat(batch):
    msa_1hot = nn.functional.one_hot(batch["extra_msa"], 23)
    msa_feat = [
        msa_1hot,
        batch["extra_has_deletion"].unsqueeze(-1),
        batch["extra_deletion_value"].unsqueeze(-1),
    ]
    return torch.cat(msa_feat, dim=-1)


def torsion_angles_to_frames(
    r: Union[Rigid, rigid_matrix_vector.Rigid3Array],
    alpha: torch.Tensor,
    aatype: torch.Tensor,
    rrgdf: torch.Tensor,
):

    rigid_type = type(r)

    # [*, N, 8, 4, 4]
    default_4x4 = rrgdf[aatype, ...]

    # [*, N, 8] transformations, i.e.
    #   One [*, N, 8, 3, 3] rotation matrix and
    #   One [*, N, 8, 3]    translation matrix
    default_r = rigid_type.from_tensor_4x4(default_4x4)

    bb_rot = alpha.new_zeros((*((1,) * len(alpha.shape[:-1])), 2))
    bb_rot[..., 1] = 1

    # [*, N, 8, 2]
    alpha = torch.cat([bb_rot.expand(*alpha.shape[:-2], -1, -1), alpha], dim=-2)

    # [*, N, 8, 3, 3]
    # Produces rotation matrices of the form:
    # [
    #   [1, 0  , 0  ],
    #   [0, a_2,-a_1],
    #   [0, a_1, a_2]
    # ]
    # This follows the original code rather than the supplement, which uses
    # different indices.

    all_rots = alpha.new_zeros(default_r.shape + (4, 4))
    all_rots[..., 0, 0] = 1
    all_rots[..., 1, 1] = alpha[..., 1]
    all_rots[..., 1, 2] = -alpha[..., 0]
    all_rots[..., 2, 1:3] = alpha

    all_rots = rigid_type.from_tensor_4x4(all_rots)
    all_frames = default_r.compose(all_rots)

    chi2_frame_to_frame = all_frames[..., 5]
    chi3_frame_to_frame = all_frames[..., 6]
    chi4_frame_to_frame = all_frames[..., 7]

    chi1_frame_to_bb = all_frames[..., 4]
    chi2_frame_to_bb = chi1_frame_to_bb.compose(chi2_frame_to_frame)
    chi3_frame_to_bb = chi2_frame_to_bb.compose(chi3_frame_to_frame)
    chi4_frame_to_bb = chi3_frame_to_bb.compose(chi4_frame_to_frame)

    all_frames_to_bb = rigid_type.cat(
        [
            all_frames[..., :5],
            chi2_frame_to_bb.unsqueeze(-1),
            chi3_frame_to_bb.unsqueeze(-1),
            chi4_frame_to_bb.unsqueeze(-1),
        ],
        dim=-1,
    )

    all_frames_to_global = r[..., None].compose(all_frames_to_bb)

    return all_frames_to_global


def frames_and_literature_positions_to_atom14_pos(
    r: Union[Rigid, rigid_matrix_vector.Rigid3Array],
    aatype: torch.Tensor,
    default_frames,
    group_idx,
    atom_mask,
    lit_positions,
):
    # [*, N, 14, 4, 4]
    default_4x4 = default_frames[aatype, ...]

    # [*, N, 14]
    group_mask = group_idx[aatype, ...]

    # [*, N, 14, 8]
    group_mask = nn.functional.one_hot(
        group_mask,
        num_classes=default_frames.shape[-3],
    )

    # [*, N, 14, 8]
    t_atoms_to_global = r[..., None, :] * group_mask

    # [*, N, 14]
    t_atoms_to_global = t_atoms_to_global.map_tensor_fn(lambda x: torch.sum(x, dim=-1))

    # [*, N, 14]
    atom_mask = atom_mask[aatype, ...].unsqueeze(-1)

    # [*, N, 14, 3]
    lit_positions = lit_positions[aatype, ...]
    pred_positions = t_atoms_to_global.apply(lit_positions)
    pred_positions = pred_positions * atom_mask

    return pred_positions