File size: 29,081 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
from collections import defaultdict
from typing import Any, Optional
import numpy as np
import torch
from biotite.structure import AtomArray
from scipy.spatial.distance import cdist
from protenix.data.tokenizer import TokenArray
def identify_mol_type(
ref_space_uid: torch.Tensor,
atom_sums: torch.Tensor,
chain_id: torch.Tensor,
chain_lengths: torch.Tensor,
) -> torch.Tensor:
"""
Generate mol_type masks based on the given rules.
Args:
ref_space_uid (torch.Tensor): A tensor of unique ids, shape (N,).
atom_sums (torch.Tensor): A tensor of atom sums corresponding to each unique id, shape (N,).
chain_id (torch.Tensor): A tensor of chain IDs corresponding to each unique id, shape (N,).
chain_lengths (torch.Tensor): A tensor of chain lengths, shape (num_chains,).
Returns:
is_metal (torch.Tensor): A mask indicating metals.
first_indices (torch.Tensor): A tensor of first indices for each unique id, shape (N,).
last_indices (torch.Tensor): A tensor of last indices for each unique id, shape (N,).
"""
assert (
ref_space_uid.shape == atom_sums.shape
), "ref_space_uid and atom_sums must have the same shape."
# Initialize masks
is_metal = torch.zeros_like(ref_space_uid, dtype=torch.bool)
first_indices = torch.zeros_like(ref_space_uid, dtype=torch.long)
last_indices = torch.zeros_like(ref_space_uid, dtype=torch.long)
# Count occurrences of each ref_space_uid
unique_ids, counts = torch.unique(ref_space_uid, return_counts=True)
for unique_id, count in zip(unique_ids, counts):
mask = ref_space_uid == unique_id
first_index = mask.nonzero(as_tuple=False)[0].item()
last_index = mask.nonzero(as_tuple=False)[-1].item()
first_indices[mask] = first_index
last_indices[mask] = last_index
atom_sum = atom_sums[mask]
if count == 1 and chain_lengths[chain_id[mask].long()] == 1:
is_metal[mask] = atom_sum == 1
return (
is_metal,
first_indices,
last_indices,
)
def get_interface_token(
chain_id: torch.Tensor,
reference_chain_id: torch.Tensor,
token_distance: torch.Tensor,
token_distance_mask: torch.Tensor,
interface_minimal_distance: int = 15,
) -> torch.Tensor:
"""
Get tokens in contact with the other chain.
Args:
chain_id: [all_token_length, ], chain ID of each token
reference_chain_id: [1] or [2], the reference atom is selected within the reference chains
token_distance: [chain/interface_token_length, all_token_length], distance matrix between the chain/interface tokens and the assembly tokens
token_distance_mask:[chain/interface_token_length, all_token_length], indicates valid distance
interface_minimal_distance: the minimal distance to any other chains
Returns:
interface_token_indices: indices of tokens of interface
"""
# expand reference_chain_id to chain_id shape
expand_reference_chain_id = torch.zeros(chain_id.size(), dtype=torch.int)
for _chain_id in reference_chain_id:
expand_reference_chain_id += chain_id == _chain_id
# get distance mask, difference chain mask
mask_distance = token_distance < interface_minimal_distance
mask_diff_chain = (chain_id[None, :] != chain_id[:, None])[
expand_reference_chain_id.nonzero(as_tuple=True)[0]
]
mask = mask_distance * mask_diff_chain * token_distance_mask
mask_interface = torch.sum(mask, dim=-1)
interface_token_indices = torch.nonzero(mask_interface, as_tuple=True)[0]
return interface_token_indices
def get_spatial_crop_index(
tokens: torch.Tensor,
chain_id: torch.Tensor,
token_distance: torch.Tensor,
token_distance_mask: torch.Tensor,
reference_chain_id: torch.Tensor,
ref_space_uid_token: torch.Tensor,
crop_size: int,
crop_complete_ligand_unstdRes: bool = False,
interface_crop: bool = False,
interface_minimal_distance: int = 15,
) -> torch.Tensor:
"""
Crop sequences continuesly across chains.
Args:
tokens: [all_token_length,], all tokens within an assembly
chain_id: [all_token_length,], all tokens' chain ID within an assembly
token_distance: [chain/interface_token_length, all_token_length], distance matrix between the chain/interface tokens and the assembly tokens
token_distance_mask: [chain/interface_token_length, all_token_length], indicates valid distance
reference_chain_id: [1] or [2],the reference atom is selected within the reference_chains ID
crop_size: total crop size of the whole assembly
interface_crop: whether use interface tokens as referenced token
interface_minimal_distance: the minimal distance to any other chains
Returns:
selected_token_indices: torch.Tensor, shape=(min(crop_size, tokens.shape[0]), )
"""
# interface spatial cropping: select reference tokens with contact to the other
if interface_crop and interface_minimal_distance is not None:
reference_token_indices = get_interface_token(
chain_id=chain_id,
reference_chain_id=reference_chain_id,
token_distance=token_distance,
token_distance_mask=token_distance_mask,
interface_minimal_distance=interface_minimal_distance,
)
if len(reference_token_indices) < 1 and len(reference_chain_id) == 1:
# If a chain does not contain any interfacial atoms, use all resolved tokens.
reference_token_indices = torch.nonzero(
token_distance_mask.bool().any(-1), as_tuple=True
)[0]
else:
# select reference tokens within the given chain or interface
reference_token_indices = torch.nonzero(
token_distance_mask.bool().any(-1), as_tuple=True
)[0]
# random select one token from reference_token_indices
assert len(reference_token_indices) > 0, "No resolved atoms in reference tokens!"
random_idx = torch.randint(0, reference_token_indices.shape[0], (1,)).item()
reference_token_idx = reference_token_indices[random_idx].item()
assert (
token_distance_mask[reference_token_idx].bool().any()
), "Select a unresolved reference token"
distance_to_reference = token_distance[reference_token_idx]
# add noise to break tie
noise_break_tie = torch.arange(0, distance_to_reference.shape[0]).float() * 1e-3
distance_to_reference_mask = token_distance_mask[reference_token_idx]
distance_to_reference = torch.where(
distance_to_reference_mask.bool(), distance_to_reference, torch.inf
)
# find k nearest tokens
nearest_k = min(crop_size, tokens.shape[0])
selected_token_indices = (
torch.topk(distance_to_reference + noise_break_tie, nearest_k, largest=False)
.indices.sort()
.values
)
def drop_uncompleted_mol(selected_token_indices):
selected_uid = ref_space_uid_token[selected_token_indices]
mask = torch.ones_like(ref_space_uid_token, dtype=torch.bool)
mask[selected_token_indices] = False
unselected_uid = ref_space_uid_token[mask]
# Find overlap elements
overlap_uid = torch.Tensor(np.intersect1d(selected_uid, unselected_uid))
# Remove overlap elements from elements_B
remain_indices = selected_token_indices[
~torch.isin(selected_uid, overlap_uid)
].long()
return remain_indices
selected_token_indices = torch.flatten(selected_token_indices)
if crop_complete_ligand_unstdRes is True:
selected_token_indices = drop_uncompleted_mol(selected_token_indices)
assert (
selected_token_indices.shape[0] <= crop_size
), f"Spatial cropping crop {selected_token_indices.shape[0]}, more than {crop_size} tokens!!"
return selected_token_indices, reference_token_idx
def get_continues_crop_index(
tokens: torch.Tensor,
chain_id: torch.Tensor,
ref_space_uid_token: torch.Tensor,
atom_sums: torch.Tensor,
crop_size: int,
crop_complete_ligand_unstdRes: Optional[bool] = False,
drop_last: Optional[bool] = False,
remove_metal: Optional[bool] = False,
) -> torch.Tensor:
"""
Crop sequences continuesly across chains. Reference: AF-multimer Algorithm 1.
Args:
tokens: [all_token_length,], flatten tokens
chain_id: [all_token_length,], all tokens' chain ID within an assembly
atom_sums: [all_token_length,] sum of atoms within one ref_space_uid
ref_space_uid: [all_atom_length,] unique chain-residue id
crop_size: total crop size of the whole assembly
crop_complete_ligand_unstdRes: Whether to crop the complete ligand or unstandard residues.
If False, the ligand is usually fragmented during sequential cropping.
drop_last: whether to ensure all ligands or unstandard residues to be cropped completely,
if not, we will ignore the completion of the last one to meet the crop_size quota.
remove_metal: whether remove all metal/ions
Returns:
selected_token_indices: torch.Tensor, shape=(crop_size, )
"""
# get chain counts info
unique_chain_id = torch.unique(chain_id)
chain_lengths = torch.bincount(chain_id.long())
chain_offset_list = torch.tensor(
[torch.where(chain_id == chain_idx)[0][0] for chain_idx in unique_chain_id],
)
# identify the mol type
(
is_metal,
uid_first_indices,
uid_last_indices,
) = identify_mol_type(ref_space_uid_token, atom_sums, chain_id, chain_lengths)
def _qualify_crop_size(cur_crop_size, crop_size_min, N_added):
if cur_crop_size < crop_size_min:
return False
if cur_crop_size + N_added > crop_size:
return False
return True
def _determine_start_end_point(start_idx, end_idx, crop_size_min, N_added):
if start_idx == end_idx:
return start_idx, end_idx
# determine the start_idx
left_start_point = right_start_point = start_idx
# if this is not the first time this uid occurants, then it must be a middle point
if uid_first_indices[start_idx] != start_idx:
start_in_middle = True
left_start_point = uid_first_indices[start_idx]
right_start_point = uid_last_indices[start_idx] + 1
else:
start_in_middle = False
# determine the end_idx
left_end_point = right_end_point = end_idx
# if this is not the last time this uid occurants, then it must be a middle point
if end_idx > 0 and uid_last_indices[end_idx - 1] != end_idx - 1:
end_in_middle = True
left_end_point = uid_first_indices[end_idx - 1]
right_end_point = uid_last_indices[end_idx - 1] + 1
else:
end_in_middle = False
if start_in_middle is False and end_in_middle is False:
return start_idx, end_idx
elif start_in_middle is True and end_in_middle is True:
# alwalys use left edge
start_in_middle = False
start_idx = left_start_point
if start_in_middle is False and end_in_middle is True:
# need to determine: use left end or right end
left_crop_size = left_end_point - start_idx
right_crop_size = right_end_point - start_idx
is_left_ok = _qualify_crop_size(left_crop_size, crop_size_min, N_added)
is_right_ok = _qualify_crop_size(right_crop_size, crop_size_min, N_added)
if is_left_ok and is_right_ok:
end_idx = (
left_end_point
if torch.randint(low=0, high=2, size=(1,)).item() == 0
else right_end_point
)
return start_idx, end_idx
elif is_left_ok:
return start_idx, left_end_point
elif is_right_ok:
return start_idx, right_end_point
elif drop_last is True:
end_point = left_end_point
while end_point - start_idx + N_added > crop_size:
if end_point > start_idx:
end_point = uid_first_indices[end_point - 1]
else:
break
return start_idx, end_point
else:
cur_crop_size = min(end_idx - start_idx, crop_size - N_added)
return start_idx, start_idx + cur_crop_size
elif start_in_middle is True and end_in_middle is False:
# need to determine: use left start or right start
left_crop_size = end_idx - left_start_point
right_crop_size = end_idx - right_start_point
is_left_ok = _qualify_crop_size(left_crop_size, crop_size_min, N_added)
is_right_ok = _qualify_crop_size(right_crop_size, crop_size_min, N_added)
if is_left_ok and is_right_ok:
start_idx = (
left_start_point
if torch.randint(low=0, high=2, size=(1,)).item() == 0
else right_start_point
)
return start_idx, end_idx
elif is_left_ok:
return left_start_point, end_idx
elif is_right_ok:
return right_start_point, end_idx
elif drop_last is True:
return right_start_point, end_idx
else:
return start_idx, end_idx
# shuffle the list of chains
chain_shuffle_index = torch.randperm(len(unique_chain_id))
# crop over chains iteratively
selected_token_indices = []
N_added = 0 # number of tokens already selected
N_remaining = len(tokens) # number of tokens in remaining chains
if remove_metal is True:
N_remaining -= sum(is_metal).item()
for idx in chain_shuffle_index:
if N_added >= crop_size:
break
# get chain type: whether it is metal/ions
curr_is_metal = is_metal[chain_offset_list[idx]]
# whether remove metal chain
if remove_metal is True and curr_is_metal:
# skip if it is metal/ions
continue
chain_length = chain_lengths[unique_chain_id[idx].int()]
N_remaining -= chain_length
# determine the crop size
crop_size_min = min(chain_length, max(0, crop_size - (N_added + N_remaining)))
crop_size_max = min(crop_size - N_added, chain_length)
if crop_size_min > crop_size_max:
print(f"error crop_size: {crop_size_min} > {crop_size_max}")
chain_crop_size = torch.randint(
low=crop_size_min,
high=crop_size_max + 1,
size=(1,),
device=tokens.device,
).item()
chain_crop_start = torch.randint(
low=0,
high=chain_length - chain_crop_size + 1,
size=(1,),
device=tokens.device,
).item()
chain_offset = chain_offset_list[idx]
start_token_index = chain_offset + chain_crop_start
end_token_index = chain_offset + chain_crop_start + chain_crop_size
if crop_complete_ligand_unstdRes is True:
start_token_index, end_token_index = _determine_start_end_point(
start_token_index, end_token_index, crop_size_min, N_added
)
assert (
end_token_index >= start_token_index
), f"invalid crop indices!! {start_token_index}, {end_token_index}"
chain_crop_size = end_token_index - start_token_index
selected_token_indices.append(
torch.arange(
start_token_index,
end_token_index,
)
)
N_added += chain_crop_size
if crop_complete_ligand_unstdRes is True and drop_last is True:
if start_token_index < end_token_index:
assert uid_first_indices[start_token_index] == start_token_index
assert uid_last_indices[end_token_index - 1] == end_token_index - 1
selected_token_indices = torch.concat(selected_token_indices).sort().values
selected_token_indices = torch.flatten(selected_token_indices)
if drop_last is True:
assert (
selected_token_indices.shape[0] <= crop_size
), f"Continuous cropping crop {selected_token_indices.shape[0]}, more than {crop_size} tokens!!"
return selected_token_indices
class CropData(object):
"""
Crop the data based on the given crop size and reference chain indices (asym_id).
"""
def __init__(
self,
crop_size: int,
ref_chain_indices: list[int],
token_array: TokenArray,
atom_array: AtomArray,
method_weights: list[float] = [0.2, 0.4, 0.4],
contiguous_crop_complete_lig: bool = False,
spatial_crop_complete_lig: bool = False,
drop_last: bool = False,
remove_metal: bool = False,
) -> None:
"""
Args:
crop_size (int): The size of the crop to be sampled.
ref_chain_indices (list[int]): The "asym_id_int" of the reference chains.
token_array (TokenArray): The token array.
atom_array (AtomArray): The atom array.
method_weights (list[float]): The weights corresponding to these three cropping methods:
["ContiguousCropping", "SpatialCropping", "SpatialInterfaceCropping"].
contiguous_crop_complete_lig: Whether to crop the complete ligand in ContiguousCropping method.
"""
self.crop_size = crop_size
self.ref_chain_indices = ref_chain_indices
self.token_array = token_array
self.atom_array = atom_array
self.method_weights = method_weights
self.cand_crop_methods = [
"ContiguousCropping",
"SpatialCropping",
"SpatialInterfaceCropping",
]
self.contiguous_crop_complete_lig = contiguous_crop_complete_lig
self.spatial_crop_complete_lig = spatial_crop_complete_lig
self.drop_last = drop_last
self.remove_metal = remove_metal
def random_crop_method(self) -> str:
"""
Choose a random cropping method based on the given weights.
Returns:
str: The name of the randomly selected cropping method.
"""
return random.choices(self.cand_crop_methods, k=1, weights=self.method_weights)[
0
]
def get_token_dist_mat(self, token_indices_in_ref: np.ndarray) -> np.ndarray:
"""
Get the distance matrix of the tokens in the reference chain.
Args:
token_indices_in_ref (list): The indices of the tokens in the reference chain.
Returns:
numpy.ndarray: The distance matrix of the tokens in the reference chain,
shape=(len(tokens_in_ref_chain), len(tokens)).
"""
centre_atom_indices = self.token_array.get_annotation("centre_atom_index")
centre_atom_coords = self.atom_array.coord[centre_atom_indices]
partial_token_dist_matrix = cdist(
centre_atom_coords[token_indices_in_ref],
centre_atom_coords,
"euclidean",
)
assert partial_token_dist_matrix.shape == (
len(token_indices_in_ref),
len(self.token_array),
)
return partial_token_dist_matrix
def extract_info(
self,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[int]]:
"""
Extract information from the token array and atom array.
Returns:
tuple: A tuple containing the following elements:
- tokens (torch.Tensor): The token array.
- chain_id (torch.Tensor): The chain IDs of the atoms.
- token_dist_mask_1d (torch.Tensor): The distance mask of the tokens.
- token_indices_in_ref (list[int]): The indices of the tokens in the reference chain.
- is_ligand (torch.Tensor): Whether chain type is ligand.
"""
tokens = self.token_array.get_values()
chain_id = []
token_dist_mask_1d = []
token_indices_in_ref = []
token_centre_atom_indices = self.token_array.get_annotation("centre_atom_index")
centre_atoms = self.atom_array[token_centre_atom_indices]
chain_id = centre_atoms.asym_id_int
token_dist_mask_1d = centre_atoms.is_resolved
token_indices_in_ref = np.where(
np.isin(centre_atoms.asym_id_int, self.ref_chain_indices)
)[0]
is_ligand = centre_atoms.is_ligand
tokens = torch.Tensor(tokens)
chain_id = torch.Tensor(chain_id)
token_dist_mask_1d = torch.Tensor(token_dist_mask_1d)
is_ligand = torch.Tensor(is_ligand)
return tokens, chain_id, token_dist_mask_1d, token_indices_in_ref, is_ligand
def crop_by_indices(
self,
selected_token_indices: torch.Tensor,
msa_features: dict[str, np.ndarray] = None,
template_features: dict[str, np.ndarray] = None,
) -> tuple[TokenArray, AtomArray, dict[str, Any], dict[str, Any]]:
"""
Crop the token array, atom array, msa features and template features based on the selected token indices.
"""
return self.select_by_token_indices(
token_array=self.token_array,
atom_array=self.atom_array,
selected_token_indices=selected_token_indices,
msa_features=msa_features,
template_features=template_features,
)
@staticmethod
def select_by_token_indices(
token_array: TokenArray,
atom_array: AtomArray,
selected_token_indices: torch.Tensor,
msa_features: dict[str, np.ndarray] = None,
template_features: dict[str, np.ndarray] = None,
) -> tuple[TokenArray, AtomArray, dict[str, Any], dict[str, Any]]:
"""
Crop the token array, atom array, msa features and template features based on the selected token indices.
Args:
token_array (TokenArray): the input token array
atom_array (AtomArray): the input atom array
selected_token_indices (torch.Tensor): The indices of the tokens to be cropped.
msa_feature (dict[str, np.ndarray]): The MSA features.
template_feature (dict[str, np.ndarray]): The Template features.
Returns:
cropped_token_array (TokenArray): The cropped token array.
cropped_atom_array (AtomArray): The cropped atom array.
cropped_msa_features (dict[str, np.ndarray]): The cropped msa features.
cropped_template_features (dict[str, np.ndarray]): The cropped template features.
"""
cropped_token_array = copy.deepcopy(token_array[selected_token_indices])
cropped_atom_indices = []
totol_atom_num = 0
for idx, token in enumerate(cropped_token_array):
cropped_atom_indices.extend(token.atom_indices)
centre_idx_in_token_atoms = token.atom_indices.index(
token.centre_atom_index
)
token_atom_num = len(token.atom_indices)
token.atom_indices = list(
range(totol_atom_num, totol_atom_num + token_atom_num)
)
token.centre_atom_index = token.atom_indices[centre_idx_in_token_atoms]
totol_atom_num += token_atom_num
cropped_atom_array = copy.deepcopy(atom_array[cropped_atom_indices])
assert len(cropped_token_array) == selected_token_indices.shape[0]
_selected_token_indices = selected_token_indices.tolist()
# crop msa
cropped_msa_features = {}
if msa_features is not None:
for k, v in msa_features.items():
if k in ["profile", "deletion_mean"]:
cropped_msa_features[k] = v[_selected_token_indices]
elif k in ["msa", "has_deletion", "deletion_value"]:
cropped_msa_features[k] = v[:, selected_token_indices]
elif k in [
"prot_pair_num_alignments",
"prot_unpair_num_alignments",
"rna_pair_num_alignments",
"rna_unpair_num_alignments",
]:
# keep the feature that do not need crop
cropped_msa_features[k] = v
# crop template
cropped_template_features = {}
if template_features is not None:
for k, v in template_features.items():
if k == "template_restype":
cropped_template_features[k] = v[:, _selected_token_indices]
elif k == "template_all_atom_mask":
cropped_template_features[k] = v[:, _selected_token_indices, :]
elif k == "template_all_atom_positions":
cropped_template_features[k] = v[:, _selected_token_indices, :, :]
else:
raise ValueError(f"Cropping for {k} has not been implemented yet")
return (
cropped_token_array,
cropped_atom_array,
cropped_msa_features,
cropped_template_features,
)
def get_crop_indices(self, crop_method: str = None) -> torch.Tensor:
"""
Get selected indices based on the selected crop method.
Args:
crop_method (str): The cropping method to be used. Default is None.
Returns:
selected_indices : torch.Tensor, shape=(N_selected, )
"""
tokens, chain_id, token_dist_mask_1d, token_indices_in_ref, is_ligand = (
self.extract_info()
)
assert (
crop_method in self.cand_crop_methods
), f"Unknown crop method: {crop_method}"
# add token level ref_space_uid
ref_space_uid_token = self.atom_array.ref_space_uid[
self.token_array.get_annotation("centre_atom_index")
]
atom_num_in_tokens = []
for token in self.token_array:
atom_num_in_tokens.append(len(token.atom_indices))
uid_num_dict = defaultdict(int)
for idx, uid in enumerate(ref_space_uid_token):
uid_num_dict[uid] += atom_num_in_tokens[idx]
atom_sums = torch.tensor(
[uid_num_dict[uid] for idx, uid in enumerate(ref_space_uid_token)]
)
assert (atom_sums > 0).all().item(), "zero atoms"
ref_space_uid_token = torch.Tensor(ref_space_uid_token)
if crop_method == "ContiguousCropping":
selected_token_indices = get_continues_crop_index(
tokens=tokens,
chain_id=chain_id,
ref_space_uid_token=ref_space_uid_token,
atom_sums=atom_sums,
crop_size=self.crop_size,
crop_complete_ligand_unstdRes=self.contiguous_crop_complete_lig,
drop_last=self.drop_last,
remove_metal=self.remove_metal,
)
reference_token_index = -1
else:
interface_crop = (
True if crop_method == "SpatialInterfaceCropping" else False
)
token_distance = self.get_token_dist_mat(
token_indices_in_ref=token_indices_in_ref
)
token_distance_mask = (
token_dist_mask_1d[token_indices_in_ref][:, None]
* token_dist_mask_1d[None, :]
)
selected_token_indices, reference_token_index = get_spatial_crop_index(
tokens=tokens,
chain_id=chain_id,
token_distance=torch.Tensor(token_distance),
token_distance_mask=torch.Tensor(token_distance_mask),
reference_chain_id=self.ref_chain_indices,
ref_space_uid_token=ref_space_uid_token,
crop_size=self.crop_size,
crop_complete_ligand_unstdRes=self.spatial_crop_complete_lig,
interface_crop=interface_crop,
)
return (
selected_token_indices,
token_indices_in_ref[reference_token_index].item(),
)
|