File size: 33,316 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from protenix.metrics.rmsd import rmsd, self_aligned_rmsd
from protenix.model.utils import expand_at_dim, pad_at_dim
from protenix.utils.logger import get_logger
from protenix.utils.permutation.utils import Checker, save_permutation_error
logger = get_logger(__name__)
def run(
pred_coord: torch.Tensor,
true_coord: torch.Tensor,
true_coord_mask: torch.Tensor,
ref_space_uid: torch.Tensor,
atom_perm_list: torch.Tensor,
permute_label: bool = True,
alignment_mask: torch.Tensor = None,
error_dir: str = None,
dataset_name: str = None,
pdb_id: str = None,
global_align_wo_symmetric_atom: bool = False,
):
"""apply a permutation to correct symmetric atoms in residues.
Args:
Please refer to the args of `correct_symmetric_atoms`.
Returns:
if permute_label = True,
output_dict: a dictionary in the following form, recording the permuted label.
{
"coordinate": permuted_coord,
"coordinate_mask": permuted_mask,
}
info_dict: a dictionary of logging.
if permute_label = False,
output_dict: a dictionary in the following form, recording the permuted prediction.
{
"coordinate": permuted_coord,
}
info_dict: a dictionary of logging.
"""
try:
permuted_coord, permuted_mask, info_dict, indices_permutation = (
correct_symmetric_atoms(
pred_coord=pred_coord,
true_coord=true_coord,
true_coord_mask=true_coord_mask,
ref_space_uid=ref_space_uid,
atom_perm_list=atom_perm_list,
permute_label=permute_label,
alignment_mask=alignment_mask,
global_align_wo_symmetric_atom=global_align_wo_symmetric_atom,
)
)
if permute_label:
return (
{
"coordinate": permuted_coord,
"coordinate_mask": permuted_mask,
},
info_dict,
indices_permutation,
)
else:
return {"coordinate": permuted_coord}, info_dict, indices_permutation
except Exception as e:
error_message = str(e)
if dataset_name:
logger.warning(f"dataset: {dataset_name}")
if pdb_id:
logger.warning(f"pdb id: {pdb_id}")
logger.warning(error_message)
save_permutation_error(
data={
"error_message": error_message,
"pred_coord": pred_coord,
"true_coord": true_coord,
"true_coord_mask": true_coord_mask,
"ref_space_uid": ref_space_uid,
"atom_perm_list": atom_perm_list,
"permute_label": permute_label,
"alignment_mask": alignment_mask,
"dataset_name": dataset_name,
"pdb_id": pdb_id,
},
error_dir=error_dir,
)
return {}, {}, None
def collect_residues_with_symmetric_atoms(
coord: torch.Tensor,
coord_mask: torch.Tensor,
ref_space_uid: torch.Tensor,
atom_perm_list: list[list],
run_checker: bool = False,
) -> tuple[list]:
"""Convert atom-level permutation attributes to residue-level attributes.
Only residues that require symmetric corrections are returned.
Args:
coord (torch.Tensor): Coordinates of atoms.
[N_atom, 3]
coord_mask (torch.Tensor): The mask indicating whether the atom is resolved in GT.
[N_atom]
ref_space_uid (torch.Tensor): Each (chain id, residue index) tuple has a unique ID.
[N_atom]
atom_perm_list (list[list]): The atom permutation list, where each sublist contains
the permutation information of the corresponding residue.
len(atom_perm_list) = N_atom.
len(atom_perm_list[i]) = N_perm for the residue of atom i.
"""
device = coord_mask.device
# Find start & end positions of each residue
diff = torch.tensor([True] + (ref_space_uid[1:] != ref_space_uid[:-1]).tolist())
start_positions = torch.cat(
(torch.nonzero(diff, as_tuple=True)[0], torch.tensor([len(ref_space_uid)]))
)
res_start_end = list(
zip(start_positions[:-1].tolist(), start_positions[1:].tolist())
) # [N_res, 2]
N_res = len(res_start_end)
assert N_res == len(torch.unique(ref_space_uid))
position_list = []
perm_list = []
coord_list = []
coord_mask_list = []
# Traverse residues and store the corresponding data
for start, end in res_start_end:
assert len(torch.unique(ref_space_uid[start:end])) == 1
# Skip if this residue contains < 3 resolved atoms.
# Alignment requires at least 3 atoms to obtain a reasonable result.
res_coord_mask = coord_mask[start:end].bool() # [N_res_atom]
if res_coord_mask.sum() < 3:
continue
# Drop duplicated permutations
perm = torch.tensor(atom_perm_list[start:end], device=device, dtype=torch.long)
perm = torch.unique(perm, dim=-1) # [N_res_atom, N_perm]
N_res_atom, N_perm = perm.size()
# Basic checks
assert perm.min().item() == 0
assert perm.max().item() == N_res_atom - 1
# Development checks
if run_checker:
Checker.are_permutations(perm, dim=0)
Checker.contains_identity(perm, dim=0)
# If all symmetric atoms are unresolved, drop the permutation
identity_perm = torch.arange(len(perm), device=device).unsqueeze(
dim=-1
) # [N_res_atom, 1]
is_sym_atom = perm != identity_perm # [N_res_atom, N_perm]
is_sym_atom_resolved = is_sym_atom * res_coord_mask.unsqueeze(dim=-1)
is_valid_perm = is_sym_atom_resolved.any(dim=0)
if not is_valid_perm.any():
# Skip if no valid permutation (other than identity) exists
continue
perm = perm[..., is_valid_perm]
perm = torch.cat([identity_perm, perm], dim=-1) # Put identity to the first
perm = perm.transpose(-1, -2) # [N_perm, N_res_atom]
position_list.append((start, end))
perm_list.append(perm)
coord_mask_list.append(res_coord_mask)
coord_list.append(coord[start:end, :])
return position_list, coord_list, coord_mask_list, perm_list, N_res
def collect_permuted_coords(
coord_list: list[torch.Tensor],
coord_mask_list: list[torch.Tensor],
perm_list: list[torch.Tensor],
run_checker: bool = False,
) -> tuple[torch.Tensor]:
"""Apply permutations to coordinates and coordinate masks
Args:
coord_list (list[torch.Tensor]): A list of coordinates.
Each element is a tensor of shape [N_res_atom, 3]. The value N_res_atom can
vary across different residues.
coord_mask_list (list[torch.Tensor]): A list of coordinate masks.
Each element is a tensor of shape [N_res_atom].
perm_list (list[torch.Tensor]): list of permutations.
Each element is a long tensor of shape [N_perm, N_res_atom]. The value N_perm
can vary across different residues.
Returns:
torch.Tensor:
[N_total_perm, MAX_N_res_atom, 3]
[N_total_perm, MAX_N_res_atom]
"""
MAX_N_res_atom = max(perm.size(-1) for perm in perm_list)
perm_coord = [] # [N_total_perm, N_res_atom, 3]
perm_coord_mask = [] # [N_total_perm, N_res_atom]
N_total_perm = 0
for perm, res_coord, res_coord_mask in zip(perm_list, coord_list, coord_mask_list):
# Basic shape checks
N_perm, N_res_atom = perm.size()
assert res_coord.size(-1) == 3
assert res_coord.size(0) == res_coord_mask.size(0) == perm.size(-1)
# Permute coordinates & masks
res_coord_permuted = res_coord[perm] # [N_perm, N_res_atom, 3]
res_coord_mask_permuted = res_coord_mask[perm] # [N_perm, N_res_atom]
assert res_coord_permuted.size() == (N_perm, N_res_atom, 3)
assert res_coord_mask_permuted.size() == (N_perm, N_res_atom)
if run_checker:
Checker.are_permutations(perm, dim=-1)
Checker.batch_permute(perm, res_coord, res_coord_permuted)
Checker.batch_permute(perm, res_coord_mask, res_coord_mask_permuted)
# Pad to MAX_N_res_atom
N_res_atom = perm.size(dim=-1)
if N_res_atom < MAX_N_res_atom:
pad_length = (0, MAX_N_res_atom - N_res_atom)
res_coord_permuted = pad_at_dim(
res_coord_permuted, dim=-2, pad_length=pad_length
) # [N_perm, MAX_N_res_atom, 3]
res_coord_mask_permuted = pad_at_dim(
res_coord_mask_permuted, dim=-1, pad_length=pad_length
)
N_total_perm += N_perm
perm_coord.append(res_coord_permuted)
perm_coord_mask.append(res_coord_mask_permuted)
perm_coord = torch.cat(perm_coord, dim=0)
perm_coord_mask = torch.cat(perm_coord_mask, dim=0)
# Shape check
assert perm_coord.size() == (N_total_perm, MAX_N_res_atom, 3)
assert perm_coord_mask.size() == (N_total_perm, MAX_N_res_atom)
return perm_coord, perm_coord_mask
class AtomPermutation(object):
def __init__(
self,
eps: float = 1e-8,
run_checker: bool = False,
global_align_wo_symmetric_atom: bool = False,
):
"""Class for assigning the optimal permutations of true coordinates/pred coordinates and coordinate masks.
Args:
eps (float): A small number used in alignment.
run_checker (bool): If true, it applies more checkers to ensure the correctness.
global_align_wo_symmetric_atom (bool): If true, the global alignment before AtomPermutation will not consider atoms with permutation.
"""
self.eps = eps
self.run_checker = run_checker
self.global_align_wo_symmetric_atom = global_align_wo_symmetric_atom
@staticmethod
def check_input_shape(
pred_coord: torch.Tensor,
true_coord: torch.Tensor,
true_coord_mask: torch.Tensor,
ref_space_uid: torch.Tensor,
atom_perm_list: list[list],
):
N_atom = len(true_coord)
assert true_coord.dim() == 2
assert true_coord_mask.dim() == 1
assert ref_space_uid.dim() == 1
assert true_coord.size(-1) == 3
assert true_coord.size(-2) == N_atom
assert ref_space_uid.size(-1) == N_atom
assert len(atom_perm_list) == N_atom
assert pred_coord.dim() in [2, 3] # for simplicity
assert pred_coord.shape[-2:] == (N_atom, 3)
@staticmethod
def global_align_pred_to_true(
pred_coord: torch.Tensor,
true_coord: torch.Tensor,
true_coord_mask: torch.Tensor,
eps: float = 1e-8,
) -> tuple[torch.Tensor]:
"""Align the predicted coordinates to true coordinates
Args:
pred_coord (torch.Tensor):
[Batch, N_atom, 3] or [N_atom, 3]
true_coord (torch.Tensor):
[N_atom, 3]
true_coord_mask (torch.Tensor):
[N_atom, 3]
Returns:
aligned_rmsd (torch.Tensor):
[Batch] or []
transformed_pred_coord (torch.Tensor): having the same shape as pred_coord.
[Batch, N_atom, 3] or [N_atom, 3]
"""
if true_coord.dim() < pred_coord.dim():
assert pred_coord.dim() == 3 # [Batch, N_atom, 3]
Batch = pred_coord.size(0)
expand_func = lambda x: expand_at_dim(x, dim=0, n=Batch)
else:
expand_func = lambda x: x
with torch.cuda.amp.autocast(enabled=False):
aligned_rmsd, transformed_pred_coord, _, _ = self_aligned_rmsd(
pred_pose=pred_coord.to(torch.float32),
true_pose=expand_func(true_coord.to(torch.float32)),
atom_mask=expand_func(true_coord_mask),
allowing_reflection=False,
reduce=False,
eps=eps,
) # [Batch], [Batch, N_atom, 3]
return aligned_rmsd, transformed_pred_coord
@staticmethod
def get_identity_permutation(batch_shape, N_atom, device):
"""Return identity permutation indices if no multiple-permutation exists for every residue
Returns:
torch.Tensor: identity permutation of indices
[N_atom] or [Batch, N_atom]
"""
identity = torch.arange(N_atom, device=device)
if len(batch_shape) == 0:
return identity
else:
assert len(batch_shape) == 1
return torch.stack([identity for _ in range(batch_shape[0])], dim=0)
@staticmethod
def _optimize_per_residue_permutation_by_rmsd(
per_residue_pred_coord_list: list[torch.Tensor],
per_residue_coord_list: list[torch.Tensor],
per_residue_coord_mask_list: list[torch.Tensor],
per_residue_perm_list: list[torch.Tensor],
eps: float = 1e-8,
run_checker: bool = False,
) -> tuple[list[torch.Tensor]]:
"""Find the optimal permutations of true coordinates and coordinate masks to minimize the
RMSD between true coordinates and predicted coordinates.
Args:
per_residue_pred_coord_list (torch.Tensor): List of residues. Each element records
the predicted atom coordinates of one residue. Each element has shape
[N_res_atom, 3] or [Batch, N_res_atom, 3]
per_residue_coord_list (list[torch.Tensor]): List of residues. Each element records
the atom coordinates of one residue. Each element has shape [N_res_atom, 3].
per_residue_coord_mask_list (list[torch.Tensor]): List of residues. Each element records
the atom coordinate masks of one residue. Each element has shape [N_res_atom].
per_residue_perm_list (list[torch.Tensor]): List of residues. Each element records
the atom permutations of one residue. Each element has shape [N_perm, N_res_atom].
eps (float, optional): A small number, used in alignment. Defaults to 1e-8.
run_checker (bool, optional): If True, run extensive checks.
Returns:
best_permutation_list (list[torch.Tensor]): List of residues. Each element records the
optimal permutation that should apply to true coordinates for one residue. Each element
has shape
[N_res_atom] or [Batch, N_res_atom]
is_permuted_list (list[torch.Tensor]): List of residues. Each element records whether the
atoms in this residue is permuted. Each element has shape
[] or [Batch]
optimized_rmsd_list (list[torch.Tensor]): List of residues. Each element records the optimized
rmsd of the residue. Each element has shape
[] or [Batch]
original_rmsd_list (list[torch.Tensor]): List of residues. Each element records the original
rmsd of the residue. Each element has shape
[] or [Batch]
"""
# Find max number of per-residue atoms
per_residue_N_perm = [perm.size(0) for perm in per_residue_perm_list]
per_residue_N_atom = [perm.size(1) for perm in per_residue_perm_list]
N_max_atom = max(per_residue_N_atom)
# Permute true coordinates & masks according to the permutations in per_residue_perm_list
permuted_coord, permuted_coord_mask = collect_permuted_coords(
coord_list=per_residue_coord_list,
coord_mask_list=per_residue_coord_mask_list,
perm_list=per_residue_perm_list,
run_checker=run_checker,
) # [N_total_perm, N_max_atom, 3], [N_total_perm, N_max_atom]
assert permuted_coord.size(-2) == permuted_coord_mask.size(-1) == N_max_atom
N_total_perm = permuted_coord.size(0)
# Pad 'pred_coord' to the same shape as 'permuted_coord'
per_residue_pred_coord_list = [
pad_at_dim(
p_coord, dim=-2, pad_length=(0, N_max_atom - p_coord.size(dim=-2))
)
for p_coord in per_residue_pred_coord_list
]
# Repeat N_perm times for each residue
pred_coord = torch.stack(
sum(
[
[p_coord] * N_perm
for N_perm, p_coord in zip(
per_residue_N_perm, per_residue_pred_coord_list
)
],
[],
),
dim=-3,
) # [N_total_perm, N_max_atom, 3] or [Batch, N_total_perm, N_max_atom, 3]
assert pred_coord.shape[-3:] == (N_total_perm, N_max_atom, 3)
batch_shape = pred_coord.shape[:-3]
assert len(batch_shape) in [0, 1]
if len(batch_shape) == 1:
# expand true coord & mask to have the same batch size as pred coord
Batch = pred_coord.size(0)
permuted_coord = expand_at_dim(permuted_coord, dim=0, n=Batch)
permuted_coord_mask = expand_at_dim(permuted_coord_mask, dim=0, n=Batch)
# Compute per-residue rmsd
with torch.cuda.amp.autocast(enabled=False):
per_res_rmsd = rmsd(
pred_pose=pred_coord.to(torch.float32),
true_pose=permuted_coord.to(torch.float32),
mask=permuted_coord_mask,
eps=eps,
reduce=False,
) # [N_total_perm] or [Batch, N_total_perm]
assert per_res_rmsd.size() == batch_shape + (N_total_perm,)
# Find the best permutation
best_permutation_list = []
is_permuted_list = []
original_rmsd_list = []
optimized_rmsd_list = []
i = 0
# Enumerate over all residues (could be improved by scatter)
for N_perm, N_res_atom, perm in zip(
per_residue_N_perm, per_residue_N_atom, per_residue_perm_list
):
cur_res_rmsd = per_res_rmsd[..., i : i + N_perm] # [batch_shape, N_perm]
best_rmsd, best_j = torch.min(cur_res_rmsd, dim=-1) # [batch_shape]
best_perm = perm[best_j] # [batch_shape, N_res_atom]
best_permutation_list.append(best_perm)
is_permuted_list.append(
best_j > 0
) # The first of the perm lists is the identity
optimized_rmsd_list.append(best_rmsd)
original_rmsd_list.append(cur_res_rmsd[..., 0])
i += N_perm
if run_checker:
assert perm.size() == (N_perm, N_res_atom)
assert cur_res_rmsd.size() == batch_shape + (N_perm,)
assert best_rmsd.size() == batch_shape
assert best_j.size() == batch_shape
assert best_perm.size() == batch_shape + (N_res_atom,)
Checker.are_permutations(best_perm, dim=-1)
def _check_identity(j_value, perm):
if j_value > 0:
Checker.not_contain_identity(perm)
else:
Checker.contains_identity(perm)
if best_j.dim() == 0:
_check_identity(best_j, best_perm)
else:
for j_value, perm_j in zip(best_j, best_perm):
_check_identity(j_value, perm_j)
return (
best_permutation_list,
is_permuted_list,
optimized_rmsd_list,
original_rmsd_list,
)
def __call__(
self,
pred_coord: torch.Tensor,
true_coord: torch.Tensor,
true_coord_mask: torch.Tensor,
ref_space_uid: torch.Tensor,
atom_perm_list: list[list],
alignment_mask: torch.Tensor,
verbose: bool = False,
run_checker: bool = False,
):
"""
Args:
pred_coord (torch.Tensor): Predicted coordinates of atoms.
[N_atom, 3] or [Batch, atom, 3]
true_coord (torch.Tensor): true coordinates of atoms.
[N_atom, 3]
true_coord_mask (torch.Tensor): The mask indicating whether the atom is resolved.
[N_atom]
ref_space_uid (torch.Tensor): Each (chain id, residue index) tuple has a unique ID.
[N_atom]
atom_perm_list (list[list]): The atom permutation list, where each sublist contains
the permutation information of the corresponding residue.
len(atom_perm_list) = N_atom.
len(atom_perm_list[i]) = N_perm for the residue of atom i.
permute_label (bool, optional): If true, return indices permutations of the true coordinate.
Otherwise, return indices permutations for the predicted coordinate. Defaults to True.
alignment_mask (torch.Tensor, optional): Defaults to None. A mask indicating which atoms to
consider while performing the alignment.
verbose (bool, optional): Defaults to False.
run_checker (bool, optional): Whether running more checks for debug. Defaults to False.
Returns:
permutation (torch.Tensor): the optimized permutation of atoms.
[N_atom] or [Batch, N_atom]
log_dict (Dict): a dictionary recording the permutation stats.
"""
# Basic Info & Shape checker
device = pred_coord.device
batch_shape = pred_coord.shape[:-2]
N_atom = pred_coord.size(-2)
self.check_input_shape(
pred_coord, true_coord, true_coord_mask, ref_space_uid, atom_perm_list
)
# Initialize log dict
log_dict = {}
# Initialize the permutation as identity
permutation = self.get_identity_permutation(
batch_shape, N_atom=N_atom, device=device
)
# Collect residues that require permutations
(
per_residue_position_list,
per_residue_coord_list,
per_residue_coord_mask_list,
per_residue_perm_list,
N_res,
) = collect_residues_with_symmetric_atoms(
coord=true_coord,
coord_mask=true_coord_mask,
ref_space_uid=ref_space_uid,
atom_perm_list=atom_perm_list,
run_checker=run_checker,
)
log_dict["N_res"] = N_res
log_dict["N_res_with_symmetry"] = len(per_residue_coord_list)
log_dict["N_res_permuted"] = 0.0
log_dict["has_res_permuted"] = 0
# If no residues contain symmetry, return now.
if not per_residue_perm_list:
print("No atom permutation is needed. Return the identity permutation.")
return (permutation, log_dict)
# no_permute_atom_mask: 1 represent this atom can not be permuted
no_permute_atom_mask = torch.ones_like(true_coord_mask)
for (start, end), per_residue_perm in zip(
per_residue_position_list, per_residue_perm_list
):
no_permute_atom_mask[start:end] = 1 - (
(per_residue_perm != per_residue_perm[0]).sum(dim=0) > 0
).to(torch.int32)
# Perform a global alignment of predictions to true coordinates
if alignment_mask is None:
alignment_mask = true_coord_mask
else:
alignment_mask = true_coord_mask * alignment_mask.bool()
if self.global_align_wo_symmetric_atom:
alignment_mask = no_permute_atom_mask * alignment_mask
if alignment_mask.sum().item() < 3:
print("No atom permutation is needed. Return the identity permutation.")
return (permutation, log_dict)
# This is for atom permutation, use mask with different strategies
_, transformed_pred_coord = self.global_align_pred_to_true(
pred_coord,
true_coord,
alignment_mask,
eps=self.eps,
)
# This is for unpermuted all-atom baseline calculation
aligned_rmsd, _ = self.global_align_pred_to_true(
pred_coord,
true_coord,
true_coord_mask,
eps=self.eps,
)
log_dict["unpermuted_rmsd"] = aligned_rmsd.mean().item() # [Batch]
"""
To efficiently optimize the residues parallely, group the residues
according to the number of atoms in each residue.
"""
per_residue_N_atom = [coord.size(0) for coord in per_residue_coord_list]
res_atom_cutoff = [15, 30, 50, 100, 100000]
grouped_indices = {}
for i, n in enumerate(per_residue_N_atom):
for atom_cutoff in res_atom_cutoff:
if n <= atom_cutoff:
break
grouped_indices.setdefault(atom_cutoff, []).append(i)
assert len(sum(list(grouped_indices.values()), [])) == len(
per_residue_perm_list
)
residue_position_list = []
residue_best_permutation_list = []
residue_is_permuted_list = []
residue_optimized_rmsd_list = []
residue_original_rmsd_list = []
for atom_cutoff, residue_group in grouped_indices.items():
if verbose:
print(f"{len(residue_group)} residues have <={atom_cutoff} atoms.")
# Enumerte permutations within each residue to minimize per-residue RMSD
per_res_pos_list = [per_residue_position_list[i] for i in residue_group]
(
per_res_best_permutation,
per_res_is_permuted,
per_res_optimized_rmsd,
per_res_ori_rmsd,
) = self._optimize_per_residue_permutation_by_rmsd(
per_residue_pred_coord_list=[
transformed_pred_coord[..., pos[0] : pos[1], :]
for pos in per_res_pos_list
],
per_residue_coord_list=[
per_residue_coord_list[i] for i in residue_group
],
per_residue_coord_mask_list=[
per_residue_coord_mask_list[i] for i in residue_group
],
per_residue_perm_list=[per_residue_perm_list[i] for i in residue_group],
eps=self.eps,
run_checker=self.run_checker,
)
residue_position_list.extend(per_res_pos_list)
residue_best_permutation_list.extend(per_res_best_permutation)
residue_is_permuted_list.extend(per_res_is_permuted)
residue_optimized_rmsd_list.extend(per_res_optimized_rmsd)
residue_original_rmsd_list.extend(per_res_ori_rmsd)
# Aggregate per_residue results
# 1. Best permutation
indices_list = [
torch.arange(pos[0], pos[1], device=device) for pos in residue_position_list
]
residue_atom_indices = torch.cat(indices_list, dim=-1) # [N_perm_atom]
residue_best_permutation = torch.cat(
[
ind[perm]
for ind, perm in zip(indices_list, residue_best_permutation_list)
],
dim=-1,
) # [Batch, N_perm_atom] or [N_perm_atom]
permutation[..., residue_atom_indices] = residue_best_permutation
# 2. Other statistics
is_res_permuted = torch.stack(residue_is_permuted_list, dim=-1).float()
log_dict["N_res_permuted"] = is_res_permuted.sum(dim=-1).mean().item()
log_dict["has_res_permuted"] = (
(is_res_permuted.sum(dim=-1) > 0).float().mean().item()
)
return permutation, log_dict
def correct_symmetric_atoms(
pred_coord: torch.Tensor,
true_coord: torch.Tensor,
true_coord_mask: torch.Tensor,
ref_space_uid: torch.Tensor,
atom_perm_list: list[list],
permute_label: bool = True,
alignment_mask: torch.Tensor = None,
verbose: bool = False,
run_checker: bool = False,
eps: float = 1e-8,
global_align_wo_symmetric_atom: bool = False,
):
"""
Return optimally permuted true coordinates and masks according to the predicted coordinates
Or, return optimalled permuted predicted coordinates if permute_label is False.
Args:
pred_coord (torch.Tensor): predicted atom positions
[Batch, N_atom, 3] or [N_atom, 3]
true_coord (torch.Tensor): true atom positions
true_coord_mask (torch.Tensor): a mask indicating whether the atom is resolved.
ref_space_uid (torch.Tensor): unique residue ID for each atom.
[N_atom]
atom_perm_list (list[list]): The atom permutation list, where each sublist contains
the permutation information of the corresponding residue.
len(atom_perm_list) = N_atom.
len(atom_perm_list[i]) = N_perm for the residue of atom i.
permute_label (bool): indicates whether permuted true coordinates are returned or
predicted coordinates are returned.
alignment_mask (torch.Tensor, optional): a mask indicating which atoms are considered while
performing the alignment.
[N_atom]
eps (float, optional): A small number used in alignment. Defaults to 1e-8.
global_align_wo_symmetric_atom (bool): If true, the global alignment before AtomPermutation will not consider atoms has permutation.
Returns:
If permute_label is True, it returns
coordinate (torch.Tensor): permuted true coordinates.
[Batch, N_atom, 3] or [N_atom, 3]
coordinate_mask (torch.Tensor): permuted true coordinate masks.
[Batch, N_atom] or [N_atom]
If permuted_label is False, it returns the permuted prediction.
[Batch, N_atom, 3] or [N_atom, 3]
log_dict: logging info for the permutation
percent_res_permuted (torch.Tensor): percentage of residues (excluding those with less than 3 atoms or identity perm only) that have been permuted
best_aligned_rmsd_improved: rmsd improved after permutation, using self_aligned_rmsd
"""
assert pred_coord.dim() in [2, 3]
assert pred_coord.size(-1) == 3
if alignment_mask is not None:
alignment_mask = (true_coord_mask * alignment_mask).bool()
else:
alignment_mask = true_coord_mask.bool()
with torch.no_grad():
# Do not compute gradient while optimizing the permutation
atom_perm = AtomPermutation(
run_checker=run_checker,
eps=eps,
global_align_wo_symmetric_atom=global_align_wo_symmetric_atom,
)
indices_permutation, log_dict = atom_perm(
pred_coord,
true_coord,
true_coord_mask,
ref_space_uid,
atom_perm_list,
alignment_mask=alignment_mask,
verbose=verbose,
)
# Log aligned rmsd after permutation
if "unpermuted_rmsd" in log_dict:
# This is the final permuted all-atom rmsd
permuted_rmsd, _ = AtomPermutation.global_align_pred_to_true(
pred_coord,
true_coord[indices_permutation],
true_coord_mask[indices_permutation],
eps=eps,
)
log_dict["permuted_rmsd"] = permuted_rmsd.mean().item()
log_dict["improved_rmsd"] = (
log_dict["unpermuted_rmsd"] - log_dict["permuted_rmsd"]
)
if permute_label:
return (
true_coord[indices_permutation],
true_coord_mask[indices_permutation],
log_dict,
indices_permutation,
)
else:
# Find the permutation of the prediction
if pred_coord.dim() == 2:
# Inverse permutation for 1D case
indices_permutation = torch.argsort(indices_permutation)
pred_coord_permuted = pred_coord[indices_permutation]
else:
# Inverse permutation for 2D case (batch mode)
indices_permutation = torch.argsort(indices_permutation, dim=1)
indices_permutation_expanded = expand_at_dim(
indices_permutation, dim=-1, n=3
) # [Batch, N_atom, 3]
pred_coord_permuted = pred_coord.gather(1, indices_permutation_expanded)
return pred_coord_permuted, None, log_dict, indices_permutation
|