File size: 33,316 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from protenix.metrics.rmsd import rmsd, self_aligned_rmsd
from protenix.model.utils import expand_at_dim, pad_at_dim
from protenix.utils.logger import get_logger
from protenix.utils.permutation.utils import Checker, save_permutation_error

logger = get_logger(__name__)


def run(
    pred_coord: torch.Tensor,
    true_coord: torch.Tensor,
    true_coord_mask: torch.Tensor,
    ref_space_uid: torch.Tensor,
    atom_perm_list: torch.Tensor,
    permute_label: bool = True,
    alignment_mask: torch.Tensor = None,
    error_dir: str = None,
    dataset_name: str = None,
    pdb_id: str = None,
    global_align_wo_symmetric_atom: bool = False,
):
    """apply a permutation to correct symmetric atoms in residues.

    Args:
        Please refer to the args of `correct_symmetric_atoms`.

    Returns:
        if permute_label = True,
            output_dict: a dictionary in the following form, recording the permuted label.
                {
                    "coordinate": permuted_coord,
                    "coordinate_mask": permuted_mask,
                }
            info_dict: a dictionary of logging.
        if permute_label = False,
            output_dict: a dictionary in the following form, recording the permuted prediction.
                {
                    "coordinate": permuted_coord,
                }
            info_dict: a dictionary of logging.
    """
    try:
        permuted_coord, permuted_mask, info_dict, indices_permutation = (
            correct_symmetric_atoms(
                pred_coord=pred_coord,
                true_coord=true_coord,
                true_coord_mask=true_coord_mask,
                ref_space_uid=ref_space_uid,
                atom_perm_list=atom_perm_list,
                permute_label=permute_label,
                alignment_mask=alignment_mask,
                global_align_wo_symmetric_atom=global_align_wo_symmetric_atom,
            )
        )
        if permute_label:
            return (
                {
                    "coordinate": permuted_coord,
                    "coordinate_mask": permuted_mask,
                },
                info_dict,
                indices_permutation,
            )
        else:
            return {"coordinate": permuted_coord}, info_dict, indices_permutation

    except Exception as e:
        error_message = str(e)
        if dataset_name:
            logger.warning(f"dataset: {dataset_name}")
        if pdb_id:
            logger.warning(f"pdb id: {pdb_id}")
        logger.warning(error_message)
        save_permutation_error(
            data={
                "error_message": error_message,
                "pred_coord": pred_coord,
                "true_coord": true_coord,
                "true_coord_mask": true_coord_mask,
                "ref_space_uid": ref_space_uid,
                "atom_perm_list": atom_perm_list,
                "permute_label": permute_label,
                "alignment_mask": alignment_mask,
                "dataset_name": dataset_name,
                "pdb_id": pdb_id,
            },
            error_dir=error_dir,
        )
        return {}, {}, None


def collect_residues_with_symmetric_atoms(
    coord: torch.Tensor,
    coord_mask: torch.Tensor,
    ref_space_uid: torch.Tensor,
    atom_perm_list: list[list],
    run_checker: bool = False,
) -> tuple[list]:
    """Convert atom-level permutation attributes to residue-level attributes.
    Only residues that require symmetric corrections are returned.

    Args:
        coord (torch.Tensor): Coordinates of atoms.
            [N_atom, 3]
        coord_mask (torch.Tensor): The mask indicating whether the atom is resolved in GT.
            [N_atom]
        ref_space_uid (torch.Tensor): Each (chain id, residue index) tuple has a unique ID.
            [N_atom]
        atom_perm_list (list[list]): The atom permutation list, where each sublist contains
                                   the permutation information of the corresponding residue.
            len(atom_perm_list) = N_atom.
            len(atom_perm_list[i]) = N_perm for the residue of atom i.

    """

    device = coord_mask.device

    # Find start & end positions of each residue
    diff = torch.tensor([True] + (ref_space_uid[1:] != ref_space_uid[:-1]).tolist())
    start_positions = torch.cat(
        (torch.nonzero(diff, as_tuple=True)[0], torch.tensor([len(ref_space_uid)]))
    )
    res_start_end = list(
        zip(start_positions[:-1].tolist(), start_positions[1:].tolist())
    )  # [N_res, 2]
    N_res = len(res_start_end)
    assert N_res == len(torch.unique(ref_space_uid))

    position_list = []
    perm_list = []
    coord_list = []
    coord_mask_list = []

    # Traverse residues and store the corresponding data
    for start, end in res_start_end:

        assert len(torch.unique(ref_space_uid[start:end])) == 1

        # Skip if this residue contains < 3 resolved atoms.
        # Alignment requires at least 3 atoms to obtain a reasonable result.
        res_coord_mask = coord_mask[start:end].bool()  # [N_res_atom]
        if res_coord_mask.sum() < 3:
            continue

        # Drop duplicated permutations
        perm = torch.tensor(atom_perm_list[start:end], device=device, dtype=torch.long)
        perm = torch.unique(perm, dim=-1)  # [N_res_atom, N_perm]
        N_res_atom, N_perm = perm.size()

        # Basic checks
        assert perm.min().item() == 0
        assert perm.max().item() == N_res_atom - 1

        # Development checks
        if run_checker:
            Checker.are_permutations(perm, dim=0)
            Checker.contains_identity(perm, dim=0)

        # If all symmetric atoms are unresolved, drop the permutation
        identity_perm = torch.arange(len(perm), device=device).unsqueeze(
            dim=-1
        )  # [N_res_atom, 1]
        is_sym_atom = perm != identity_perm  # [N_res_atom, N_perm]
        is_sym_atom_resolved = is_sym_atom * res_coord_mask.unsqueeze(dim=-1)
        is_valid_perm = is_sym_atom_resolved.any(dim=0)
        if not is_valid_perm.any():
            # Skip if no valid permutation (other than identity) exists
            continue
        perm = perm[..., is_valid_perm]
        perm = torch.cat([identity_perm, perm], dim=-1)  # Put identity to the first
        perm = perm.transpose(-1, -2)  # [N_perm, N_res_atom]

        position_list.append((start, end))
        perm_list.append(perm)
        coord_mask_list.append(res_coord_mask)
        coord_list.append(coord[start:end, :])

    return position_list, coord_list, coord_mask_list, perm_list, N_res


def collect_permuted_coords(
    coord_list: list[torch.Tensor],
    coord_mask_list: list[torch.Tensor],
    perm_list: list[torch.Tensor],
    run_checker: bool = False,
) -> tuple[torch.Tensor]:
    """Apply permutations to coordinates and coordinate masks

    Args:
        coord_list (list[torch.Tensor]): A list of coordinates.
            Each element is a tensor of shape [N_res_atom, 3]. The value N_res_atom can
            vary across different residues.
        coord_mask_list (list[torch.Tensor]): A list of coordinate masks.
            Each element is a tensor of shape [N_res_atom].
        perm_list (list[torch.Tensor]): list of permutations.
            Each element is a long tensor of shape [N_perm, N_res_atom]. The value N_perm
            can vary across different residues.

    Returns:
        torch.Tensor:
            [N_total_perm, MAX_N_res_atom, 3]
            [N_total_perm, MAX_N_res_atom]
    """

    MAX_N_res_atom = max(perm.size(-1) for perm in perm_list)
    perm_coord = []  # [N_total_perm, N_res_atom, 3]
    perm_coord_mask = []  # [N_total_perm, N_res_atom]

    N_total_perm = 0
    for perm, res_coord, res_coord_mask in zip(perm_list, coord_list, coord_mask_list):

        # Basic shape checks
        N_perm, N_res_atom = perm.size()
        assert res_coord.size(-1) == 3
        assert res_coord.size(0) == res_coord_mask.size(0) == perm.size(-1)

        # Permute coordinates & masks
        res_coord_permuted = res_coord[perm]  # [N_perm, N_res_atom, 3]
        res_coord_mask_permuted = res_coord_mask[perm]  # [N_perm, N_res_atom]
        assert res_coord_permuted.size() == (N_perm, N_res_atom, 3)
        assert res_coord_mask_permuted.size() == (N_perm, N_res_atom)

        if run_checker:
            Checker.are_permutations(perm, dim=-1)
            Checker.batch_permute(perm, res_coord, res_coord_permuted)
            Checker.batch_permute(perm, res_coord_mask, res_coord_mask_permuted)

        # Pad to MAX_N_res_atom
        N_res_atom = perm.size(dim=-1)
        if N_res_atom < MAX_N_res_atom:
            pad_length = (0, MAX_N_res_atom - N_res_atom)
            res_coord_permuted = pad_at_dim(
                res_coord_permuted, dim=-2, pad_length=pad_length
            )  # [N_perm, MAX_N_res_atom, 3]
            res_coord_mask_permuted = pad_at_dim(
                res_coord_mask_permuted, dim=-1, pad_length=pad_length
            )

        N_total_perm += N_perm
        perm_coord.append(res_coord_permuted)
        perm_coord_mask.append(res_coord_mask_permuted)

    perm_coord = torch.cat(perm_coord, dim=0)
    perm_coord_mask = torch.cat(perm_coord_mask, dim=0)

    # Shape check
    assert perm_coord.size() == (N_total_perm, MAX_N_res_atom, 3)
    assert perm_coord_mask.size() == (N_total_perm, MAX_N_res_atom)

    return perm_coord, perm_coord_mask


class AtomPermutation(object):
    def __init__(
        self,
        eps: float = 1e-8,
        run_checker: bool = False,
        global_align_wo_symmetric_atom: bool = False,
    ):
        """Class for assigning the optimal permutations of true coordinates/pred coordinates and coordinate masks.

        Args:
            eps (float): A small number used in alignment.
            run_checker (bool): If true, it applies more checkers to ensure the correctness.
            global_align_wo_symmetric_atom (bool):  If true, the global alignment before AtomPermutation will not consider atoms with permutation.
        """

        self.eps = eps
        self.run_checker = run_checker
        self.global_align_wo_symmetric_atom = global_align_wo_symmetric_atom

    @staticmethod
    def check_input_shape(
        pred_coord: torch.Tensor,
        true_coord: torch.Tensor,
        true_coord_mask: torch.Tensor,
        ref_space_uid: torch.Tensor,
        atom_perm_list: list[list],
    ):

        N_atom = len(true_coord)
        assert true_coord.dim() == 2
        assert true_coord_mask.dim() == 1
        assert ref_space_uid.dim() == 1

        assert true_coord.size(-1) == 3
        assert true_coord.size(-2) == N_atom
        assert ref_space_uid.size(-1) == N_atom
        assert len(atom_perm_list) == N_atom

        assert pred_coord.dim() in [2, 3]  # for simplicity
        assert pred_coord.shape[-2:] == (N_atom, 3)

    @staticmethod
    def global_align_pred_to_true(
        pred_coord: torch.Tensor,
        true_coord: torch.Tensor,
        true_coord_mask: torch.Tensor,
        eps: float = 1e-8,
    ) -> tuple[torch.Tensor]:
        """Align the predicted coordinates to true coordinates

        Args:
            pred_coord (torch.Tensor):
                [Batch, N_atom, 3] or [N_atom, 3]
            true_coord (torch.Tensor):
                [N_atom, 3]
            true_coord_mask (torch.Tensor):
                [N_atom, 3]

        Returns:
            aligned_rmsd (torch.Tensor):
                [Batch] or []
            transformed_pred_coord (torch.Tensor): having the same shape as pred_coord.
                [Batch, N_atom, 3] or [N_atom, 3]
        """

        if true_coord.dim() < pred_coord.dim():
            assert pred_coord.dim() == 3  # [Batch, N_atom, 3]
            Batch = pred_coord.size(0)
            expand_func = lambda x: expand_at_dim(x, dim=0, n=Batch)
        else:
            expand_func = lambda x: x

        with torch.cuda.amp.autocast(enabled=False):
            aligned_rmsd, transformed_pred_coord, _, _ = self_aligned_rmsd(
                pred_pose=pred_coord.to(torch.float32),
                true_pose=expand_func(true_coord.to(torch.float32)),
                atom_mask=expand_func(true_coord_mask),
                allowing_reflection=False,
                reduce=False,
                eps=eps,
            )  # [Batch], [Batch, N_atom, 3]

        return aligned_rmsd, transformed_pred_coord

    @staticmethod
    def get_identity_permutation(batch_shape, N_atom, device):
        """Return identity permutation indices if no multiple-permutation exists for every residue

        Returns:
            torch.Tensor: identity permutation of indices
                [N_atom] or [Batch, N_atom]
        """
        identity = torch.arange(N_atom, device=device)
        if len(batch_shape) == 0:
            return identity
        else:
            assert len(batch_shape) == 1
            return torch.stack([identity for _ in range(batch_shape[0])], dim=0)

    @staticmethod
    def _optimize_per_residue_permutation_by_rmsd(
        per_residue_pred_coord_list: list[torch.Tensor],
        per_residue_coord_list: list[torch.Tensor],
        per_residue_coord_mask_list: list[torch.Tensor],
        per_residue_perm_list: list[torch.Tensor],
        eps: float = 1e-8,
        run_checker: bool = False,
    ) -> tuple[list[torch.Tensor]]:
        """Find the optimal permutations of true coordinates and coordinate masks to minimize the
        RMSD between true coordinates and predicted coordinates.

        Args:
            per_residue_pred_coord_list (torch.Tensor): List of residues. Each element records
                the predicted atom coordinates of one residue. Each element has shape
                [N_res_atom, 3] or [Batch, N_res_atom, 3]
            per_residue_coord_list (list[torch.Tensor]): List of residues. Each element records
                the atom coordinates of one residue. Each element has shape [N_res_atom, 3].
            per_residue_coord_mask_list (list[torch.Tensor]): List of residues. Each element records
                the atom coordinate masks of one residue. Each element has shape [N_res_atom].
            per_residue_perm_list (list[torch.Tensor]): List of residues. Each element records
                the atom permutations of one residue. Each element has shape [N_perm, N_res_atom].
            eps (float, optional): A small number, used in alignment. Defaults to 1e-8.
            run_checker (bool, optional): If True, run extensive checks.

        Returns:
            best_permutation_list (list[torch.Tensor]): List of residues. Each element records the
                optimal permutation that should apply to true coordinates for one residue. Each element
                has shape
                [N_res_atom] or [Batch, N_res_atom]
            is_permuted_list (list[torch.Tensor]): List of residues. Each element records whether the
                atoms in this residue is permuted. Each element has shape
                [] or [Batch]
            optimized_rmsd_list (list[torch.Tensor]): List of residues. Each element records the optimized
                rmsd of the residue. Each element has shape
                [] or [Batch]
            original_rmsd_list (list[torch.Tensor]): List of residues. Each element records the original
                rmsd of the residue. Each element has shape
                [] or [Batch]
        """

        # Find max number of per-residue atoms
        per_residue_N_perm = [perm.size(0) for perm in per_residue_perm_list]
        per_residue_N_atom = [perm.size(1) for perm in per_residue_perm_list]
        N_max_atom = max(per_residue_N_atom)

        # Permute true coordinates & masks according to the permutations in per_residue_perm_list
        permuted_coord, permuted_coord_mask = collect_permuted_coords(
            coord_list=per_residue_coord_list,
            coord_mask_list=per_residue_coord_mask_list,
            perm_list=per_residue_perm_list,
            run_checker=run_checker,
        )  # [N_total_perm, N_max_atom, 3], [N_total_perm, N_max_atom]
        assert permuted_coord.size(-2) == permuted_coord_mask.size(-1) == N_max_atom
        N_total_perm = permuted_coord.size(0)

        # Pad 'pred_coord' to the same shape as 'permuted_coord'
        per_residue_pred_coord_list = [
            pad_at_dim(
                p_coord, dim=-2, pad_length=(0, N_max_atom - p_coord.size(dim=-2))
            )
            for p_coord in per_residue_pred_coord_list
        ]
        # Repeat N_perm times for each residue
        pred_coord = torch.stack(
            sum(
                [
                    [p_coord] * N_perm
                    for N_perm, p_coord in zip(
                        per_residue_N_perm, per_residue_pred_coord_list
                    )
                ],
                [],
            ),
            dim=-3,
        )  # [N_total_perm, N_max_atom, 3] or [Batch, N_total_perm, N_max_atom, 3]
        assert pred_coord.shape[-3:] == (N_total_perm, N_max_atom, 3)

        batch_shape = pred_coord.shape[:-3]
        assert len(batch_shape) in [0, 1]
        if len(batch_shape) == 1:
            # expand true coord & mask to have the same batch size as pred coord
            Batch = pred_coord.size(0)
            permuted_coord = expand_at_dim(permuted_coord, dim=0, n=Batch)
            permuted_coord_mask = expand_at_dim(permuted_coord_mask, dim=0, n=Batch)

        # Compute per-residue rmsd
        with torch.cuda.amp.autocast(enabled=False):
            per_res_rmsd = rmsd(
                pred_pose=pred_coord.to(torch.float32),
                true_pose=permuted_coord.to(torch.float32),
                mask=permuted_coord_mask,
                eps=eps,
                reduce=False,
            )  # [N_total_perm] or [Batch, N_total_perm]
            assert per_res_rmsd.size() == batch_shape + (N_total_perm,)

        # Find the best permutation
        best_permutation_list = []
        is_permuted_list = []
        original_rmsd_list = []
        optimized_rmsd_list = []
        i = 0

        # Enumerate over all residues (could be improved by scatter)
        for N_perm, N_res_atom, perm in zip(
            per_residue_N_perm, per_residue_N_atom, per_residue_perm_list
        ):
            cur_res_rmsd = per_res_rmsd[..., i : i + N_perm]  # [batch_shape, N_perm]
            best_rmsd, best_j = torch.min(cur_res_rmsd, dim=-1)  # [batch_shape]
            best_perm = perm[best_j]  # [batch_shape, N_res_atom]
            best_permutation_list.append(best_perm)

            is_permuted_list.append(
                best_j > 0
            )  # The first of the perm lists is the identity

            optimized_rmsd_list.append(best_rmsd)
            original_rmsd_list.append(cur_res_rmsd[..., 0])

            i += N_perm

            if run_checker:
                assert perm.size() == (N_perm, N_res_atom)
                assert cur_res_rmsd.size() == batch_shape + (N_perm,)
                assert best_rmsd.size() == batch_shape
                assert best_j.size() == batch_shape
                assert best_perm.size() == batch_shape + (N_res_atom,)
                Checker.are_permutations(best_perm, dim=-1)

                def _check_identity(j_value, perm):
                    if j_value > 0:
                        Checker.not_contain_identity(perm)
                    else:
                        Checker.contains_identity(perm)

                if best_j.dim() == 0:
                    _check_identity(best_j, best_perm)
                else:
                    for j_value, perm_j in zip(best_j, best_perm):
                        _check_identity(j_value, perm_j)

        return (
            best_permutation_list,
            is_permuted_list,
            optimized_rmsd_list,
            original_rmsd_list,
        )

    def __call__(
        self,
        pred_coord: torch.Tensor,
        true_coord: torch.Tensor,
        true_coord_mask: torch.Tensor,
        ref_space_uid: torch.Tensor,
        atom_perm_list: list[list],
        alignment_mask: torch.Tensor,
        verbose: bool = False,
        run_checker: bool = False,
    ):
        """

        Args:
            pred_coord (torch.Tensor): Predicted coordinates of atoms.
                [N_atom, 3] or [Batch, atom, 3]
            true_coord (torch.Tensor): true coordinates of atoms.
                [N_atom, 3]
            true_coord_mask (torch.Tensor): The mask indicating whether the atom is resolved.
                [N_atom]
            ref_space_uid (torch.Tensor): Each (chain id, residue index) tuple has a unique ID.
                [N_atom]
            atom_perm_list (list[list]): The atom permutation list, where each sublist contains
                                          the permutation information of the corresponding residue.
                len(atom_perm_list) = N_atom.
                len(atom_perm_list[i]) = N_perm for the residue of atom i.
            permute_label (bool, optional): If true, return indices permutations of the true coordinate.
                Otherwise, return indices permutations for the predicted coordinate. Defaults to True.
            alignment_mask (torch.Tensor, optional): Defaults to None. A mask indicating which atoms to
                consider while performing the alignment.
            verbose (bool, optional): Defaults to False.
            run_checker (bool, optional): Whether running more checks for debug. Defaults to False.

        Returns:
            permutation (torch.Tensor): the optimized permutation of atoms.
                [N_atom] or [Batch, N_atom]
            log_dict (Dict): a dictionary recording the permutation stats.
        """

        # Basic Info & Shape checker
        device = pred_coord.device
        batch_shape = pred_coord.shape[:-2]
        N_atom = pred_coord.size(-2)
        self.check_input_shape(
            pred_coord, true_coord, true_coord_mask, ref_space_uid, atom_perm_list
        )

        # Initialize log dict
        log_dict = {}

        # Initialize the permutation as identity
        permutation = self.get_identity_permutation(
            batch_shape, N_atom=N_atom, device=device
        )

        # Collect residues that require permutations
        (
            per_residue_position_list,
            per_residue_coord_list,
            per_residue_coord_mask_list,
            per_residue_perm_list,
            N_res,
        ) = collect_residues_with_symmetric_atoms(
            coord=true_coord,
            coord_mask=true_coord_mask,
            ref_space_uid=ref_space_uid,
            atom_perm_list=atom_perm_list,
            run_checker=run_checker,
        )
        log_dict["N_res"] = N_res
        log_dict["N_res_with_symmetry"] = len(per_residue_coord_list)
        log_dict["N_res_permuted"] = 0.0
        log_dict["has_res_permuted"] = 0

        # If no residues contain symmetry, return now.
        if not per_residue_perm_list:
            print("No atom permutation is needed. Return the identity permutation.")
            return (permutation, log_dict)

        # no_permute_atom_mask: 1 represent this atom can not be permuted
        no_permute_atom_mask = torch.ones_like(true_coord_mask)
        for (start, end), per_residue_perm in zip(
            per_residue_position_list, per_residue_perm_list
        ):
            no_permute_atom_mask[start:end] = 1 - (
                (per_residue_perm != per_residue_perm[0]).sum(dim=0) > 0
            ).to(torch.int32)

        # Perform a global alignment of predictions to true coordinates
        if alignment_mask is None:
            alignment_mask = true_coord_mask
        else:
            alignment_mask = true_coord_mask * alignment_mask.bool()
        if self.global_align_wo_symmetric_atom:
            alignment_mask = no_permute_atom_mask * alignment_mask

        if alignment_mask.sum().item() < 3:
            print("No atom permutation is needed. Return the identity permutation.")
            return (permutation, log_dict)

        # This is for atom permutation, use mask with different strategies
        _, transformed_pred_coord = self.global_align_pred_to_true(
            pred_coord,
            true_coord,
            alignment_mask,
            eps=self.eps,
        )
        # This is for unpermuted all-atom baseline calculation
        aligned_rmsd, _ = self.global_align_pred_to_true(
            pred_coord,
            true_coord,
            true_coord_mask,
            eps=self.eps,
        )
        log_dict["unpermuted_rmsd"] = aligned_rmsd.mean().item()  # [Batch]

        """ 
        To efficiently optimize the residues parallely, group the residues
        according to the number of atoms in each residue.
        """
        per_residue_N_atom = [coord.size(0) for coord in per_residue_coord_list]
        res_atom_cutoff = [15, 30, 50, 100, 100000]
        grouped_indices = {}
        for i, n in enumerate(per_residue_N_atom):
            for atom_cutoff in res_atom_cutoff:
                if n <= atom_cutoff:
                    break
            grouped_indices.setdefault(atom_cutoff, []).append(i)

        assert len(sum(list(grouped_indices.values()), [])) == len(
            per_residue_perm_list
        )

        residue_position_list = []
        residue_best_permutation_list = []
        residue_is_permuted_list = []
        residue_optimized_rmsd_list = []
        residue_original_rmsd_list = []
        for atom_cutoff, residue_group in grouped_indices.items():

            if verbose:
                print(f"{len(residue_group)} residues have <={atom_cutoff} atoms.")

            # Enumerte permutations within each residue to minimize per-residue RMSD
            per_res_pos_list = [per_residue_position_list[i] for i in residue_group]
            (
                per_res_best_permutation,
                per_res_is_permuted,
                per_res_optimized_rmsd,
                per_res_ori_rmsd,
            ) = self._optimize_per_residue_permutation_by_rmsd(
                per_residue_pred_coord_list=[
                    transformed_pred_coord[..., pos[0] : pos[1], :]
                    for pos in per_res_pos_list
                ],
                per_residue_coord_list=[
                    per_residue_coord_list[i] for i in residue_group
                ],
                per_residue_coord_mask_list=[
                    per_residue_coord_mask_list[i] for i in residue_group
                ],
                per_residue_perm_list=[per_residue_perm_list[i] for i in residue_group],
                eps=self.eps,
                run_checker=self.run_checker,
            )
            residue_position_list.extend(per_res_pos_list)
            residue_best_permutation_list.extend(per_res_best_permutation)
            residue_is_permuted_list.extend(per_res_is_permuted)
            residue_optimized_rmsd_list.extend(per_res_optimized_rmsd)
            residue_original_rmsd_list.extend(per_res_ori_rmsd)

        # Aggregate per_residue results
        # 1. Best permutation
        indices_list = [
            torch.arange(pos[0], pos[1], device=device) for pos in residue_position_list
        ]
        residue_atom_indices = torch.cat(indices_list, dim=-1)  # [N_perm_atom]
        residue_best_permutation = torch.cat(
            [
                ind[perm]
                for ind, perm in zip(indices_list, residue_best_permutation_list)
            ],
            dim=-1,
        )  # [Batch, N_perm_atom] or [N_perm_atom]
        permutation[..., residue_atom_indices] = residue_best_permutation

        # 2. Other statistics
        is_res_permuted = torch.stack(residue_is_permuted_list, dim=-1).float()
        log_dict["N_res_permuted"] = is_res_permuted.sum(dim=-1).mean().item()
        log_dict["has_res_permuted"] = (
            (is_res_permuted.sum(dim=-1) > 0).float().mean().item()
        )

        return permutation, log_dict


def correct_symmetric_atoms(
    pred_coord: torch.Tensor,
    true_coord: torch.Tensor,
    true_coord_mask: torch.Tensor,
    ref_space_uid: torch.Tensor,
    atom_perm_list: list[list],
    permute_label: bool = True,
    alignment_mask: torch.Tensor = None,
    verbose: bool = False,
    run_checker: bool = False,
    eps: float = 1e-8,
    global_align_wo_symmetric_atom: bool = False,
):
    """
    Return optimally permuted true coordinates and masks according to the predicted coordinates
    Or, return optimalled permuted predicted coordinates if permute_label is False.

    Args:
        pred_coord (torch.Tensor): predicted atom positions
            [Batch, N_atom, 3] or [N_atom, 3]
        true_coord (torch.Tensor): true atom positions
        true_coord_mask (torch.Tensor): a mask indicating whether the atom is resolved.
        ref_space_uid (torch.Tensor): unique residue ID for each atom.
            [N_atom]
        atom_perm_list (list[list]): The atom permutation list, where each sublist contains
                                     the permutation information of the corresponding residue.
            len(atom_perm_list) = N_atom.
            len(atom_perm_list[i]) = N_perm for the residue of atom i.
        permute_label (bool): indicates whether permuted true coordinates are returned or
            predicted coordinates are returned.
        alignment_mask (torch.Tensor, optional): a mask indicating which atoms are considered while
            performing the alignment.
            [N_atom]
        eps (float, optional): A small number used in alignment. Defaults to 1e-8.
        global_align_wo_symmetric_atom (bool):  If true, the global alignment before AtomPermutation will not consider atoms has permutation.

    Returns:
        If permute_label is True, it returns
            coordinate (torch.Tensor): permuted true coordinates.
                [Batch, N_atom, 3] or [N_atom, 3]
            coordinate_mask (torch.Tensor): permuted true coordinate masks.
                [Batch, N_atom] or [N_atom]
        If permuted_label is False, it returns the permuted prediction.
            [Batch, N_atom, 3] or [N_atom, 3]

        log_dict: logging info for the permutation
            percent_res_permuted (torch.Tensor): percentage of residues (excluding those with less than 3 atoms or identity perm only) that have been permuted
            best_aligned_rmsd_improved: rmsd improved after permutation, using self_aligned_rmsd
    """

    assert pred_coord.dim() in [2, 3]
    assert pred_coord.size(-1) == 3

    if alignment_mask is not None:
        alignment_mask = (true_coord_mask * alignment_mask).bool()
    else:
        alignment_mask = true_coord_mask.bool()

    with torch.no_grad():
        # Do not compute gradient while optimizing the permutation
        atom_perm = AtomPermutation(
            run_checker=run_checker,
            eps=eps,
            global_align_wo_symmetric_atom=global_align_wo_symmetric_atom,
        )
        indices_permutation, log_dict = atom_perm(
            pred_coord,
            true_coord,
            true_coord_mask,
            ref_space_uid,
            atom_perm_list,
            alignment_mask=alignment_mask,
            verbose=verbose,
        )

    # Log aligned rmsd after permutation
    if "unpermuted_rmsd" in log_dict:
        # This is the final permuted all-atom rmsd
        permuted_rmsd, _ = AtomPermutation.global_align_pred_to_true(
            pred_coord,
            true_coord[indices_permutation],
            true_coord_mask[indices_permutation],
            eps=eps,
        )
        log_dict["permuted_rmsd"] = permuted_rmsd.mean().item()
        log_dict["improved_rmsd"] = (
            log_dict["unpermuted_rmsd"] - log_dict["permuted_rmsd"]
        )

    if permute_label:
        return (
            true_coord[indices_permutation],
            true_coord_mask[indices_permutation],
            log_dict,
            indices_permutation,
        )
    else:
        # Find the permutation of the prediction
        if pred_coord.dim() == 2:
            # Inverse permutation for 1D case
            indices_permutation = torch.argsort(indices_permutation)
            pred_coord_permuted = pred_coord[indices_permutation]
        else:
            # Inverse permutation for 2D case (batch mode)
            indices_permutation = torch.argsort(indices_permutation, dim=1)
            indices_permutation_expanded = expand_at_dim(
                indices_permutation, dim=-1, n=3
            )  # [Batch, N_atom, 3]
            pred_coord_permuted = pred_coord.gather(1, indices_permutation_expanded)

        return pred_coord_permuted, None, log_dict, indices_permutation