File size: 10,773 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from protenix.metrics.rmsd import rmsd
from protenix.model.utils import expand_at_dim
from protenix.utils.distributed import traverse_and_aggregate
from protenix.utils.logger import get_logger
from protenix.utils.permutation.chain_permutation.utils import (
    apply_transform,
    get_optimal_transform,
    num_unique_matches,
)

logger = get_logger(__name__)


def permute_pred_to_optimize_pocket_aligned_rmsd(
    pred_coord: torch.Tensor,  # [N_sample, N_atom, 3]
    true_coord: torch.Tensor,  # [N_atom, 3]
    true_coord_mask: torch.Tensor,
    true_pocket_mask: torch.Tensor,
    true_ligand_mask: torch.Tensor,
    atom_entity_id: torch.Tensor,  # [N_atom]
    atom_asym_id: torch.Tensor,  # [N_atom]
    mol_atom_index: torch.Tensor,  # [N_atom]
    use_center_rmsd: bool = False,
):
    """

    Returns:
        permute_pred_indices (list[torch.Tensor]): A list of LongTensor.
            The list contains N_sample elements.
            Each elements is a LongTensor of shape = [N_atom].
        permuted_aligned_pred_coord (torch.Tensor): permuted and aligned coordinates of pred_coord.
            [N_sample, N_atom, 3]
    """

    log_dict = {}
    atom_entity_id = atom_entity_id.long()
    atom_asym_id = atom_asym_id.long()
    mol_atom_index = mol_atom_index.long()
    true_coord_mask = true_coord_mask.bool()
    true_pocket_mask = true_pocket_mask.bool()
    true_ligand_mask = true_ligand_mask.bool()
    assert pred_coord.size(-2) == true_coord.size(-2), "Atom numbers are difference."
    assert pred_coord.dim() == 3

    # find entity_id/asym_id of pocket and ligand chains
    def _get_entity_and_asym_id(atom_mask):

        masked_asym_id = atom_asym_id[atom_mask]
        masked_entity_id = atom_entity_id[atom_mask]
        assert (masked_asym_id[0] == masked_asym_id).all()
        assert (masked_entity_id[0] == masked_entity_id).all()
        return masked_asym_id[0].item(), masked_entity_id[0].item()

    pocket_asym_id, pocket_entity_id = _get_entity_and_asym_id(true_pocket_mask)
    ligand_asym_id, ligand_entity_id = _get_entity_and_asym_id(true_ligand_mask)

    candidate_pockets = {}
    for i in torch.unique(atom_asym_id[atom_entity_id == pocket_entity_id]):
        i = i.item()
        pocket_mask = atom_asym_id == i
        pocket_mask = pocket_mask * torch.isin(
            mol_atom_index, mol_atom_index[true_pocket_mask]
        )
        assert pocket_mask.sum() == true_pocket_mask.sum()
        candidate_pockets[i] = pocket_mask.clone()
    candidate_ligands = {}
    for j in torch.unique(atom_asym_id[atom_entity_id == ligand_entity_id]):
        j = j.item()
        lig_mask_j = atom_asym_id == j
        if lig_mask_j.sum() != true_ligand_mask.sum():
            logger.warning(
                f"The ligand selected by 'mol_id' has {lig_mask_j.sum().item()} atoms."
                + f"The true ligand selected by 'asym_id' has {true_ligand_mask.sum().item()} atoms."
            )
            lig_mask_j = lig_mask_j * torch.isin(
                mol_atom_index, mol_atom_index[true_ligand_mask]
            )
        assert lig_mask_j.sum() == true_ligand_mask.sum()
        candidate_ligands[j] = lig_mask_j

    log_dict["num_sym_pocket"] = len(candidate_pockets)
    log_dict["num_sym_ligand"] = len(candidate_ligands)
    log_dict["has_sym_chain"] = len(candidate_ligands) + len(candidate_pockets) > 2

    # Enumerate over the batch dimension of pred_coord
    # to find the optimal chain assignment for each sample.

    def _find_protein_ligand_chains_for_one_sample(
        coord: torch.Tensor,
    ):
        best_results = {}
        unpermuted_results = {}
        for poc_asym_id, pocket_mask in candidate_pockets.items():
            # Align pocket_i to true pocket
            rot, trans = get_optimal_transform(
                src_atoms=coord[pocket_mask].clone(),
                tgt_atoms=true_coord[true_pocket_mask],
                mask=true_coord_mask[true_pocket_mask],
            )
            # Transform predicted coordinates according to the aligment results
            aligned_pred_coord = apply_transform(coord.clone(), rot=rot, trans=trans)

            # Find the best ligand
            ordered_lig_asym_ids = [i for i in candidate_ligands]
            orderd_lig_masks = [candidate_ligands[i] for i in ordered_lig_asym_ids]
            aligned_lig_coords = torch.stack(
                [aligned_pred_coord[m] for m in orderd_lig_masks], dim=0
            )  # [N_lig, N_lig_atom, 3]

            if use_center_rmsd:
                mask = true_coord_mask[true_ligand_mask].bool()  # [N_lig_atom]
                aligned_lig_center = aligned_lig_coords[:, mask, :].mean(
                    dim=-2, keepdim=True
                )  # [N_lig, 1, 3]
                true_coord_center = true_coord[true_ligand_mask][mask, :].mean(
                    dim=-2, keepdim=True
                )  # [1, 3]
                per_lig_rmsd = rmsd(
                    aligned_lig_center,  # [N_lig, 1, 3]
                    expand_at_dim(
                        true_coord_center,
                        dim=0,
                        n=aligned_lig_coords.size(0),
                    ),
                    reduce=False,
                )  # [N_lig]
            else:
                per_lig_rmsd = rmsd(
                    aligned_lig_coords,
                    expand_at_dim(
                        true_coord[true_ligand_mask],
                        dim=0,
                        n=aligned_lig_coords.size(0),
                    ),
                    mask=true_coord_mask[true_ligand_mask],
                    reduce=False,
                )  # [N_lig]
            lig_rmsd, idx = per_lig_rmsd.min(dim=0)
            lig_asym_id = ordered_lig_asym_ids[idx]

            if lig_rmsd < best_results.get("rmsd", torch.inf):
                best_results = {
                    "rmsd": lig_rmsd,
                    "pocket_asym_id": poc_asym_id,
                    "ligand_asym_id": lig_asym_id,
                    "aligned_pred_coord": aligned_pred_coord,
                }
            if poc_asym_id == pocket_asym_id:
                # record the unpermuted result
                i = ordered_lig_asym_ids.index(ligand_asym_id)
                unpermuted_lig_rmsd = per_lig_rmsd[i].item()
                unpermuted_results = {
                    "rmsd": unpermuted_lig_rmsd,
                    "aligned_pred_coord": aligned_pred_coord,
                }

        # record stats
        per_sample_log_dict = {
            "is_permuted": best_results["pocket_asym_id"] != pocket_asym_id
            or best_results["ligand_asym_id"] != ligand_asym_id,
            "is_permuted_pocket": best_results["pocket_asym_id"] != pocket_asym_id,
            "is_permuted_ligand": best_results["ligand_asym_id"] != ligand_asym_id,
            "algo:no_permute": best_results["pocket_asym_id"] == pocket_asym_id
            and best_results["ligand_asym_id"] == ligand_asym_id,
        }
        improved_rmsd = (unpermuted_results["rmsd"] - best_results["rmsd"]).item()
        if improved_rmsd >= 1e-12:
            # better
            per_sample_log_dict.update(
                {
                    "algo:equivalent_permute": False,
                    "algo:worse_permute": False,
                    "algo:better_permute": True,
                    "algo:better_rmsd": improved_rmsd,
                }
            )
        elif improved_rmsd < 0:
            # worse
            per_sample_log_dict.update(
                {
                    "algo:equivalent_permute": False,
                    "algo:worse_permute": True,
                    "algo:better_permute": False,
                    "algo:worse_rmsd": -improved_rmsd,
                }
            )
        elif per_sample_log_dict["is_permuted"]:
            # equivalent
            per_sample_log_dict.update(
                {
                    "algo:equivalent_permute": True,
                    "algo:worse_permute": False,
                    "algo:better_permute": False,
                }
            )
        # atom indices to permute coordinates
        N_atom = aligned_pred_coord.size(-2)
        device = aligned_pred_coord.device
        atom_indices = torch.arange(N_atom, device=device)

        permute_asym_pair = [
            (best_results["pocket_asym_id"], pocket_asym_id),
            (best_results["ligand_asym_id"], ligand_asym_id),
        ]
        for asym_new, asym_old in permute_asym_pair:
            if asym_new == asym_old:
                continue
            # switch two chains
            ori_indices = atom_indices[atom_asym_id == asym_old]
            new_indices = atom_indices[atom_asym_id == asym_new]
            atom_indices[ori_indices.tolist()] = new_indices.clone()
            atom_indices[new_indices.tolist()] = ori_indices.clone()

        aligned_pred_coord = best_results.pop("aligned_pred_coord")[atom_indices, :]
        per_sample_log_dict["rmsd"] = best_results["rmsd"].item()

        return atom_indices, aligned_pred_coord, per_sample_log_dict

    N_sample = pred_coord.size(0)
    permute_pred_indices = []
    permuted_aligned_pred_coord = []
    sample_log_dicts = []
    for i in range(N_sample):
        atom_indices, aligned_pred_coord, per_sample_log_dict = (
            _find_protein_ligand_chains_for_one_sample(pred_coord[i])
        )
        permute_pred_indices.append(atom_indices)
        permuted_aligned_pred_coord.append(aligned_pred_coord)
        sample_log_dicts.append(per_sample_log_dict)

    permuted_aligned_pred_coord = torch.stack(permuted_aligned_pred_coord, dim=0)

    log_dict.update(
        traverse_and_aggregate(
            sample_log_dicts, aggregation_func=lambda x_list: sum(x_list) / N_sample
        )
    )

    # rmsd variance
    all_sample_rmsd = torch.tensor([x["rmsd"] for x in sample_log_dicts]).float()
    log_dict.update(
        {
            "rmsd_sample_std": all_sample_rmsd.std().item(),
            "rmsd_sample_gap": (all_sample_rmsd.max() - all_sample_rmsd.min()).item(),
        }
    )

    return permute_pred_indices, permuted_aligned_pred_coord, log_dict