File size: 6,369 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# from torch_scatter: https://github.com/rusty1s/pytorch_scatter/tree/master

from typing import Optional

import torch


def broadcast(src: torch.Tensor, other: torch.Tensor, dim: int) -> torch.Tensor:
    if dim < 0:
        dim = other.dim() + dim
    if src.dim() == 1:
        for _ in range(0, dim):
            src = src.unsqueeze(0)
    for _ in range(src.dim(), other.dim()):
        src = src.unsqueeze(-1)
    src = src.expand(other.size())
    return src


def scatter_sum(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
) -> torch.Tensor:
    index = broadcast(index, src, dim)
    if out is None:
        size = list(src.size())
        if dim_size is not None:
            size[dim] = dim_size
        elif index.numel() == 0:
            size[dim] = 0
        else:
            size[dim] = int(index.max()) + 1
        out = torch.zeros(size, dtype=src.dtype, device=src.device)
        return out.scatter_add_(dim, index, src)
    else:
        return out.scatter_add_(dim, index, src)


def scatter_add(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
) -> torch.Tensor:
    return scatter_sum(src, index, dim, out, dim_size)


def scatter_mul(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_mul(src, index, dim, out, dim_size)


def scatter_mean(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
) -> torch.Tensor:
    out = scatter_sum(src, index, dim, out, dim_size)
    dim_size = out.size(dim)

    index_dim = dim
    if index_dim < 0:
        index_dim = index_dim + src.dim()
    if index.dim() <= index_dim:
        index_dim = index.dim() - 1

    ones = torch.ones(index.size(), dtype=src.dtype, device=src.device)
    count = scatter_sum(ones, index, index_dim, None, dim_size)
    count[count < 1] = 1
    count = broadcast(count, out, dim)
    if out.is_floating_point():
        out.true_divide_(count)
    else:
        out.div_(count, rounding_mode="floor")
    return out


def scatter_min(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_min(src, index, dim, out, dim_size)


def scatter_max(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size)


def scatter(
    src: torch.Tensor,
    index: torch.Tensor,
    dim: int = -1,
    out: Optional[torch.Tensor] = None,
    dim_size: Optional[int] = None,
    reduce: str = "sum",
) -> torch.Tensor:
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/add.svg?sanitize=true
        :align: center
        :width: 400px

    |

    Reduces all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along a given axis
    :attr:`dim`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :attr:`dim` and by the
    corresponding value in :attr:`index` for dimension :attr:`dim`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional
    tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})`
    and :attr:`dim` = `i`, then :attr:`out` must be an :math:`n`-dimensional
    tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`index` must be between :math:`0` and
    :math:`y - 1`, although no specific ordering of indices is required.
    The :attr:`index` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.

    For one-dimensional tensors with :obj:`reduce="sum"`, the operation
    computes

    .. math::
        \mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

    .. note::

        This operation is implemented via atomic operations on the GPU and is
        therefore **non-deterministic** since the order of parallel operations
        to the same value is undetermined.
        For floating-point variables, this results in a source of variance in
        the result.

    :param src: The source tensor.
    :param index: The indices of elements to scatter.
    :param dim: The axis along which to index. (default: :obj:`-1`)
    :param out: The destination tensor.
    :param dim_size: If :attr:`out` is not given, automatically create output
        with size :attr:`dim_size` at dimension :attr:`dim`.
        If :attr:`dim_size` is not given, a minimal sized output tensor
        according to :obj:`index.max() + 1` is returned.
    :param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mul"`,
        :obj:`"mean"`, :obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`)

    :rtype: :class:`Tensor`

    .. code-block:: python

        from torch_scatter import scatter

        src = torch.randn(10, 6, 64)
        index = torch.tensor([0, 1, 0, 1, 2, 1])

        # Broadcasting in the first and last dim.
        out = scatter(src, index, dim=1, reduce="sum")

        print(out.size())

    .. code-block::

        torch.Size([10, 3, 64])
    """
    if reduce == "sum" or reduce == "add":
        return scatter_sum(src, index, dim, out, dim_size)
    if reduce == "mul":
        return scatter_mul(src, index, dim, out, dim_size)
    elif reduce == "mean":
        return scatter_mean(src, index, dim, out, dim_size)
    elif reduce == "min":
        return scatter_min(src, index, dim, out, dim_size)[0]
    elif reduce == "max":
        return scatter_max(src, index, dim, out, dim_size)[0]
    else:
        raise ValueError