File size: 5,253 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from contextlib import nullcontext
from typing import Sequence, Union

import numpy as np
import torch
from torch import nn
from torch.nn.parameter import Parameter


def to_device(obj, device):
    """Move tensor or dict of tensors to device"""
    if isinstance(obj, dict):
        for k, v in obj.items():
            if isinstance(v, dict):
                to_device(v, device)
            elif isinstance(v, torch.Tensor):
                obj[k] = obj[k].to(device)
    elif isinstance(obj, torch.Tensor):
        obj = obj.to(device)
    else:
        raise Exception(f"type {type(obj)} not supported")
    return obj


def cdist(a: torch.Tensor, b: torch.Tensor = None):
    # for tensor shape [1, 512 * 14, 3], donot_use_mm_for_euclid_dist mode costs 0.0489s,
    # while use_mm_for_euclid_dist_if_necessary costs 0.0419s on cpu. On GPU there two costs
    # will be neglectible. So there is no need to sacrifice accuracy for speed here.
    return torch.cdist(
        a,
        b if b is not None else a,
        compute_mode="donot_use_mm_for_euclid_dist",
    )


def map_values_to_list(data: dict, recursive: bool = True) -> dict:
    """
    Convert values in a dictionary to lists.

    Args:
        data (dict): The dictionary whose values need to be converted.
        recursive (bool): Whether to recursively convert nested dictionaries. Defaults to True.

    Returns:
        dict: The dictionary with values converted to lists.
    """
    for k, v in data.items():
        if isinstance(v, torch.Tensor):
            if v.dtype == torch.bfloat16:
                v = v.float()
            data[k] = v.cpu().numpy().tolist()
        elif isinstance(v, np.ndarray):
            data[k] = v.tolist()
        elif isinstance(v, dict) and recursive:
            data[k] = map_values_to_list(v, recursive)
    return data


def round_values(data: dict, recursive: bool = True) -> dict:
    """
    Round the values in a dictionary to two decimal places.

    Args:
        data (dict): The dictionary whose values need to be rounded.
        recursive (bool): Whether to recursively round values in nested dictionaries. Defaults to True.

    Returns:
        dict: The dictionary with values rounded to two decimal places.
    """
    for k, v in data.items():
        if isinstance(v, torch.Tensor):
            if v.dtype == torch.bfloat16:
                v = v.float()
            data[k] = np.round(v.cpu().numpy(), 2)
        elif isinstance(v, np.ndarray):
            data[k] = np.round(v, 2)
        elif isinstance(v, list):
            data[k] = list(np.round(np.array(v), 2))
        elif isinstance(v, dict) and recursive:
            data[k] = round_values(v, recursive)
    return data


def autocasting_disable_decorator(disable_casting: bool):
    """
    Decorator to disable autocasting for a function.

    Args:
        disable_casting (bool): If True, disables autocasting; otherwise, uses the default autocasting context.

    Returns:
        function: A decorator that wraps the function with the specified autocasting context.
    """

    def func_wrapper(func):
        def new_func(*args, **kwargs):
            _amp_context = (
                torch.autocast(device_type="cuda", enabled=False)
                if disable_casting
                else nullcontext()
            )
            dtype = torch.float32 if disable_casting else None
            with _amp_context:
                return func(
                    *(
                        v.to(dtype=dtype) if isinstance(v, torch.Tensor) else v
                        for v in args
                    ),
                    **{
                        k: v.to(dtype=dtype) if isinstance(v, torch.Tensor) else v
                        for k, v in kwargs.items()
                    },
                )

        return new_func

    return func_wrapper


def dict_to_tensor(feature_dict: dict) -> dict:
    """
    Convert values in a dictionary to tensors and ensure they have the correct dtype.

    Args:
        feature_dict (dict): The dictionary whose values need to be converted to tensors.

    Returns:
        dict: The dictionary with values converted to tensors and adjusted to the correct dtype.
    """
    for k, v in feature_dict.items():
        if not isinstance(v, torch.Tensor):
            dtype = feature_dict[k].dtype
            feature_dict[k] = torch.tensor(v)

            if dtype in [np.int64, np.int32]:
                feature_dict[k] = feature_dict[k].to(torch.int64)
            elif dtype in [np.float32, np.float64]:
                feature_dict[k] = feature_dict[k].to(torch.float32)

    return feature_dict