File size: 16,666 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import os
import subprocess
import traceback
from collections import defaultdict
from copy import deepcopy
from os.path import exists as opexists
from os.path import join as opjoin
from pathlib import Path
from typing import Any, Dict, List, Mapping, Sequence, Tuple

import numpy as np

import protenix.data.ccd as ccd
import requests
from protenix.data.json_to_feature import SampleDictToFeatures
from protenix.web_service.colab_request_utils import run_mmseqs2_service
from protenix.web_service.dependency_url import URL

MMSEQS_SERVICE_HOST_URL = os.getenv(
    "MMSEQS_SERVICE_HOST_URL", "http://101.126.11.40:80"
)
MAX_ATOM_NUM = 60000
MAX_TOKEN_NUM = 5000
DATA_CACHE_DIR = "/n/netscratch/mzitnik_lab/Lab/zzx/af3-data/"
CHECKPOINT_DIR = "/n/netscratch/mzitnik_lab/Lab/zzx/af3-model/"


def download_tos_url(tos_url, local_file_path):
    try:
        response = requests.get(tos_url, stream=True)

        if response.status_code == 200:
            with open(local_file_path, "wb") as file:
                for chunk in response.iter_content(chunk_size=8192):
                    file.write(chunk)
            print(f"Succeeded downloading from {tos_url}.\nSaved to {local_file_path}.")
        else:
            print(
                f"Failed downloading from {tos_url}.\nStatus code: {response.status_code}"
            )

    except Exception as e:
        print(f"Error occured in downloading: {e}")


class TooLargeComplexError(Exception):
    def __init__(self, **kwargs) -> None:
        if "num_atoms" in kwargs:
            message = (
                f"We can only process complexes with no more than {MAX_ATOM_NUM} atoms, "
                f"but there are {kwargs['num_atoms']} atoms in the input."
            )
        elif "num_tokens" in kwargs:

            message = (
                f"We can only process complexes with no more than {MAX_TOKEN_NUM} tokens, "
                f"but there are {kwargs['num_tokens']} tokens in the input."
            )
        else:
            message = ""
        super().__init__(message)


class RequestParser(object):
    def __init__(
        self, request_json_path: str, request_dir: str, email: str = ""
    ) -> None:
        with open(request_json_path, "r") as f:
            self.request = json.load(f)
        self.request_dir = request_dir
        self.fpath = os.path.abspath(__file__)
        self.email = email
        os.makedirs(self.request_dir, exist_ok=True)

    def download_data_cache(self) -> Dict[str, str]:
        data_cache_dir = DATA_CACHE_DIR
        os.makedirs(data_cache_dir, exist_ok=True)
        cache_paths = {}
        for cache_name, fname in [
            ("ccd_components_file", "components.v20240608.cif"),
            ("ccd_components_rdkit_mol_file", "components.v20240608.cif.rdkit_mol.pkl"),
        ]:
            if not opexists(
                cache_path := os.path.abspath(opjoin(data_cache_dir, fname))
            ):
                tos_url = URL[cache_name]
                print(f"Downloading data cache from\n {tos_url}...")
                download_tos_url(tos_url, cache_path)
            cache_paths[cache_name] = cache_path
        return cache_paths

    def download_model(self, model_version: str, checkpoint_local_path: str) -> None:
        tos_url = URL[f"model_{model_version}"]
        print(f"Downloading model checkpoing from\n {tos_url}...")
        download_tos_url(tos_url, checkpoint_local_path)

    def get_model(self) -> str:
        checkpoint_dir = CHECKPOINT_DIR
        os.makedirs(checkpoint_dir, exist_ok=True)
        model_version = self.request["model_version"]
        if not opexists(
            checkpoint_path := opjoin(checkpoint_dir, f"model_{model_version}.pt")
        ):
            self.download_model(model_version, checkpoint_local_path=checkpoint_path)
        if opexists(checkpoint_path):
            return checkpoint_path
        else:
            raise ValueError("Failed in finding model checkpoint.")

    def get_data_json(self) -> str:
        input_json_dict = {
            "name": (self.request["name"]),
            "covalent_bonds": self.request["covalent_bonds"],
        }
        input_json_path = opjoin(self.request_dir, f"inputs.json")

        sequences = []
        entity_pending_msa = {}
        for i, entity_info_wrapper in enumerate(self.request["sequences"]):
            entity_id = str(i + 1)
            entity_info_wrapper: Dict[str, Dict[Any]]
            assert len(entity_info_wrapper) == 1

            seq_type, seq_info = next(iter(entity_info_wrapper.items()))

            if seq_type == "proteinChain":
                if self.request["use_msa"]:
                    entity_pending_msa[entity_id] = seq_info["sequence"]

            if seq_type not in [
                "proteinChain",
                "dnaSequence",
                "rnaSequence",
                "ligand",
                "ion",
            ]:
                raise NotImplementedError
            sequences.append({seq_type: seq_info})

        tmp_json_dict = deepcopy(input_json_dict)
        tmp_json_dict["sequences"] = sequences

        cache_paths = self.download_data_cache()
        ccd.COMPONENTS_FILE = cache_paths["ccd_components_file"]
        ccd.RKDIT_MOL_PKL = Path(cache_paths["ccd_components_rdkit_mol_file"])
        sample2feat = SampleDictToFeatures(
            tmp_json_dict,
        )
        atom_array = sample2feat.get_atom_array()
        num_atoms = len(atom_array)
        num_tokens = np.sum(atom_array.centre_atom_mask)
        if num_atoms > MAX_ATOM_NUM:
            raise TooLargeComplexError(num_atoms=num_atoms)
        if num_tokens > MAX_TOKEN_NUM:
            raise TooLargeComplexError(num_tokens=num_tokens)
        del tmp_json_dict

        if len(entity_pending_msa) > 0:
            seq_to_entity_id = defaultdict(list)
            for entity_id, seq in entity_pending_msa.items():
                seq_to_entity_id[seq].append(entity_id)
            seq_to_entity_id = dict(seq_to_entity_id)
            seqs_pending_msa = sorted(list(seq_to_entity_id.keys()))

            os.makedirs(msa_res_dir := opjoin(self.request_dir, "msa"), exist_ok=True)

            tmp_fasta_fpath = opjoin(msa_res_dir, "msa_input.fasta")
            RequestParser.msa_search(
                seqs_pending_msa=seqs_pending_msa,
                tmp_fasta_fpath=tmp_fasta_fpath,
                msa_res_dir=msa_res_dir,
                email=self.email,
            )
            msa_res_subdirs = RequestParser.msa_postprocess(
                seqs_pending_msa=seqs_pending_msa,
                msa_res_dir=msa_res_dir,
            )

            for seq, msa_res_dir in zip(seqs_pending_msa, msa_res_subdirs):
                for entity_id in seq_to_entity_id[seq]:
                    entity_index = int(entity_id) - 1
                    sequences[entity_index]["proteinChain"]["msa"] = {
                        "precomputed_msa_dir": msa_res_dir,
                        "pairing_db": "uniref100",
                        "pairing_db_fpath": None,
                        "non_pairing_db_fpath": None,
                        "search_too": None,
                        "msa_save_dir": None,
                    }

        input_json_dict["sequences"] = sequences
        with open(input_json_path, "w") as f:
            json.dump([input_json_dict], f, indent=4)
        return input_json_path

    @staticmethod
    def msa_search(
        seqs_pending_msa: Sequence[str],
        tmp_fasta_fpath: str,
        msa_res_dir: str,
        email: str = "",
    ) -> None:
        lines = []
        for idx, seq in enumerate(seqs_pending_msa):
            lines.append(f">query_{idx}\n")
            lines.append(f"{seq}\n")
        if (last_line := lines[-1]).endswith("\n"):
            lines[-1] = last_line.rstrip("\n")
        with open(tmp_fasta_fpath, "w") as f:
            for lines in lines:
                f.write(lines)

        with open(tmp_fasta_fpath, "r") as f:
            query_seqs = f.read()
        try:
            run_mmseqs2_service(
                query_seqs,
                msa_res_dir,
                True,
                use_templates=False,
                host_url=MMSEQS_SERVICE_HOST_URL,
                user_agent="colabfold/1.5.5",
                email=email,
            )
        except Exception as e:
            error_message = f"MMSEQS2 failed with the following error message:\n{traceback.format_exc()}"
            print(error_message)

    @staticmethod
    def msa_postprocess(seqs_pending_msa: Sequence[str], msa_res_dir: str) -> None:
        def read_m8(m8_file: str) -> Dict[str, str]:
            uniref_to_ncbi_taxid = {}
            with open(m8_file, "r") as infile:
                for line in infile:
                    line_list = line.replace("\n", "").split("\t")
                    hit_name = line_list[1]
                    ncbi_taxid = line_list[2]
                    uniref_to_ncbi_taxid[hit_name] = ncbi_taxid
            return uniref_to_ncbi_taxid

        def read_a3m(a3m_file: str) -> Tuple[List[str], List[str]]:
            heads = []
            seqs = []
            # Record the row index. The index before this index is the MSA of Uniref30 DB,
            # and the index after this index is the MSA of ColabfoldDB.
            uniref_index = 0
            with open(a3m_file, "r") as infile:
                for idx, line in enumerate(infile):
                    if line.startswith(">"):
                        heads.append(line)
                        if idx == 0:
                            query_name = line
                        elif idx > 0 and line == query_name:
                            uniref_index = idx
                    else:
                        seqs.append(line)
            return heads, seqs, uniref_index

        def make_pairing_and_non_pairing_msa(
            query_seq: str,
            seq_dir: str,
            raw_a3m_path: str,
            uniref_to_ncbi_taxid: Mapping[str, str],
        ) -> List[str]:

            heads, msa_seqs, uniref_index = read_a3m(raw_a3m_path)
            uniref100_lines = [">query\n", f"{query_seq}\n"]
            other_lines = [">query\n", f"{query_seq}\n"]

            for idx, (head, msa_seq) in enumerate(zip(heads, msa_seqs)):
                if msa_seq.rstrip("\n") == query_seq:
                    continue

                uniref_id = head.split("\t")[0][1:]
                ncbi_taxid = uniref_to_ncbi_taxid.get(uniref_id, None)
                if (ncbi_taxid is not None) and (idx < (uniref_index // 2)):
                    if not uniref_id.startswith("UniRef100_"):
                        head = head.replace(
                            uniref_id, f"UniRef100_{uniref_id}_{ncbi_taxid}/"
                        )
                    else:
                        head = head.replace(uniref_id, f"{uniref_id}_{ncbi_taxid}/")
                    uniref100_lines.extend([head, msa_seq])
                else:
                    other_lines.extend([head, msa_seq])

            with open(opjoin(seq_dir, "pairing.a3m"), "w") as f:
                for line in uniref100_lines:
                    f.write(line)
            with open(opjoin(seq_dir, "non_pairing.a3m"), "w") as f:
                for line in other_lines:
                    f.write(line)

        def make_non_pairing_msa_only(
            query_seq: str,
            seq_dir: str,
            raw_a3m_path: str,
        ):
            heads, msa_seqs, _ = read_a3m(raw_a3m_path)
            other_lines = [">query\n", f"{query_seq}\n"]
            for head, msa_seq in zip(heads, msa_seqs):
                if msa_seq.rstrip("\n") == query_seq:
                    continue
                other_lines.extend([head, msa_seq])
            with open(opjoin(seq_dir, "non_pairing.a3m"), "w") as f:
                for line in other_lines:
                    f.write(line)

        def make_dummy_msa(
            query_seq: str, seq_dir: str, msa_type: str = "both"
        ) -> None:
            if msa_type == "both":
                fnames = ["pairing.a3m", "non_pairing.a3m"]
            elif msa_type == "pairing":
                fnames = ["pairing.a3m"]
            elif msa_type == "non_pairing":
                fnames = ["non_pairing.a3m"]
            else:
                raise NotImplementedError
            for fname in fnames:
                with open(opjoin(seq_dir, fname), "w") as f:
                    f.write(">query\n")
                    f.write(f"{query_seq}\n")

        msa_res_subdirs = []
        for seq_idx, query_seq in enumerate(seqs_pending_msa):
            os.makedirs(
                seq_dir := os.path.abspath(opjoin(msa_res_dir, str(seq_idx))),
                exist_ok=True,
            )
            if opexists(raw_a3m_path := opjoin(msa_res_dir, f"{seq_idx}.a3m")):
                if opexists(m8_path := opjoin(msa_res_dir, "uniref_tax.m8")):
                    uniref_to_ncbi_taxid = read_m8(m8_path)
                    make_pairing_and_non_pairing_msa(
                        query_seq=query_seq,
                        seq_dir=seq_dir,
                        raw_a3m_path=raw_a3m_path,
                        uniref_to_ncbi_taxid=uniref_to_ncbi_taxid,
                    )
                else:
                    make_non_pairing_msa_only(
                        query_seq=query_seq,
                        seq_dir=seq_dir,
                        raw_a3m_path=raw_a3m_path,
                    )
                    make_dummy_msa(
                        query_seq=query_seq, seq_dir=seq_dir, msa_type="pairing"
                    )

            else:
                print(
                    f"Failed in searching MSA for \n{query_seq}\nusing the sequence itself as MSA."
                )
                make_dummy_msa(query_seq=query_seq, seq_dir=seq_dir)
            msa_res_subdirs.append(seq_dir)

        return msa_res_subdirs

    def launch(self) -> None:
        input_json_path = self.get_data_json()
        checkpoint_path = self.get_model()

        entry_path = os.path.abspath(
            opjoin(os.path.dirname(self.fpath), "../../runner/inference.py")
        )
        command_parts = [
            "export LAYERNORM_TYPE=fast_layernorm;",
            f"python3 {entry_path}",
            f"--load_checkpoint_path {checkpoint_path}",
            f"--dump_dir {self.request_dir}",
            f"--input_json_path {input_json_path}",
            f"--need_atom_confidence {self.request['atom_confidence']}",
            f"--use_msa {self.request['use_msa']}",
            "--num_workers 0",
            "--dtype bf16",
            "--use_deepspeed_evo_attention True",
            "--sample_diffusion.step_scale_eta 1.5",
        ]

        if "model_seeds" in self.request:
            seeds = ",".join([str(seed) for seed in self.request["model_seeds"]])
            command_parts.extend([f'--seeds "{seeds}"'])
        for key in ["N_sample", "N_step"]:
            if key in self.request:
                command_parts.extend([f"--sample_diffusion.{key} {self.request[key]}"])
        if "N_cycle" in self.request:
            command_parts.extend([f"--model.N_cycle {self.request['N_cycle']}"])
        command = " ".join(command_parts)
        print(f"Launching inference process with the command below:\n{command}")
        subprocess.call(command, shell=True)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--request_json_path",
        type=str,
        required=True,
        help="Path to the request JSON file.",
    )
    parser.add_argument(
        "--request_dir", type=str, required=True, help="Path to the request directory."
    )
    parser.add_argument(
        "--email", type=str, required=False, default="", help="Your email address."
    )

    args = parser.parse_args()
    parser = RequestParser(
        request_json_path=args.request_json_path,
        request_dir=args.request_dir,
        email=args.email,
    )
    parser.launch()