File size: 16,666 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import subprocess
import traceback
from collections import defaultdict
from copy import deepcopy
from os.path import exists as opexists
from os.path import join as opjoin
from pathlib import Path
from typing import Any, Dict, List, Mapping, Sequence, Tuple
import numpy as np
import protenix.data.ccd as ccd
import requests
from protenix.data.json_to_feature import SampleDictToFeatures
from protenix.web_service.colab_request_utils import run_mmseqs2_service
from protenix.web_service.dependency_url import URL
MMSEQS_SERVICE_HOST_URL = os.getenv(
"MMSEQS_SERVICE_HOST_URL", "http://101.126.11.40:80"
)
MAX_ATOM_NUM = 60000
MAX_TOKEN_NUM = 5000
DATA_CACHE_DIR = "/n/netscratch/mzitnik_lab/Lab/zzx/af3-data/"
CHECKPOINT_DIR = "/n/netscratch/mzitnik_lab/Lab/zzx/af3-model/"
def download_tos_url(tos_url, local_file_path):
try:
response = requests.get(tos_url, stream=True)
if response.status_code == 200:
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"Succeeded downloading from {tos_url}.\nSaved to {local_file_path}.")
else:
print(
f"Failed downloading from {tos_url}.\nStatus code: {response.status_code}"
)
except Exception as e:
print(f"Error occured in downloading: {e}")
class TooLargeComplexError(Exception):
def __init__(self, **kwargs) -> None:
if "num_atoms" in kwargs:
message = (
f"We can only process complexes with no more than {MAX_ATOM_NUM} atoms, "
f"but there are {kwargs['num_atoms']} atoms in the input."
)
elif "num_tokens" in kwargs:
message = (
f"We can only process complexes with no more than {MAX_TOKEN_NUM} tokens, "
f"but there are {kwargs['num_tokens']} tokens in the input."
)
else:
message = ""
super().__init__(message)
class RequestParser(object):
def __init__(
self, request_json_path: str, request_dir: str, email: str = ""
) -> None:
with open(request_json_path, "r") as f:
self.request = json.load(f)
self.request_dir = request_dir
self.fpath = os.path.abspath(__file__)
self.email = email
os.makedirs(self.request_dir, exist_ok=True)
def download_data_cache(self) -> Dict[str, str]:
data_cache_dir = DATA_CACHE_DIR
os.makedirs(data_cache_dir, exist_ok=True)
cache_paths = {}
for cache_name, fname in [
("ccd_components_file", "components.v20240608.cif"),
("ccd_components_rdkit_mol_file", "components.v20240608.cif.rdkit_mol.pkl"),
]:
if not opexists(
cache_path := os.path.abspath(opjoin(data_cache_dir, fname))
):
tos_url = URL[cache_name]
print(f"Downloading data cache from\n {tos_url}...")
download_tos_url(tos_url, cache_path)
cache_paths[cache_name] = cache_path
return cache_paths
def download_model(self, model_version: str, checkpoint_local_path: str) -> None:
tos_url = URL[f"model_{model_version}"]
print(f"Downloading model checkpoing from\n {tos_url}...")
download_tos_url(tos_url, checkpoint_local_path)
def get_model(self) -> str:
checkpoint_dir = CHECKPOINT_DIR
os.makedirs(checkpoint_dir, exist_ok=True)
model_version = self.request["model_version"]
if not opexists(
checkpoint_path := opjoin(checkpoint_dir, f"model_{model_version}.pt")
):
self.download_model(model_version, checkpoint_local_path=checkpoint_path)
if opexists(checkpoint_path):
return checkpoint_path
else:
raise ValueError("Failed in finding model checkpoint.")
def get_data_json(self) -> str:
input_json_dict = {
"name": (self.request["name"]),
"covalent_bonds": self.request["covalent_bonds"],
}
input_json_path = opjoin(self.request_dir, f"inputs.json")
sequences = []
entity_pending_msa = {}
for i, entity_info_wrapper in enumerate(self.request["sequences"]):
entity_id = str(i + 1)
entity_info_wrapper: Dict[str, Dict[Any]]
assert len(entity_info_wrapper) == 1
seq_type, seq_info = next(iter(entity_info_wrapper.items()))
if seq_type == "proteinChain":
if self.request["use_msa"]:
entity_pending_msa[entity_id] = seq_info["sequence"]
if seq_type not in [
"proteinChain",
"dnaSequence",
"rnaSequence",
"ligand",
"ion",
]:
raise NotImplementedError
sequences.append({seq_type: seq_info})
tmp_json_dict = deepcopy(input_json_dict)
tmp_json_dict["sequences"] = sequences
cache_paths = self.download_data_cache()
ccd.COMPONENTS_FILE = cache_paths["ccd_components_file"]
ccd.RKDIT_MOL_PKL = Path(cache_paths["ccd_components_rdkit_mol_file"])
sample2feat = SampleDictToFeatures(
tmp_json_dict,
)
atom_array = sample2feat.get_atom_array()
num_atoms = len(atom_array)
num_tokens = np.sum(atom_array.centre_atom_mask)
if num_atoms > MAX_ATOM_NUM:
raise TooLargeComplexError(num_atoms=num_atoms)
if num_tokens > MAX_TOKEN_NUM:
raise TooLargeComplexError(num_tokens=num_tokens)
del tmp_json_dict
if len(entity_pending_msa) > 0:
seq_to_entity_id = defaultdict(list)
for entity_id, seq in entity_pending_msa.items():
seq_to_entity_id[seq].append(entity_id)
seq_to_entity_id = dict(seq_to_entity_id)
seqs_pending_msa = sorted(list(seq_to_entity_id.keys()))
os.makedirs(msa_res_dir := opjoin(self.request_dir, "msa"), exist_ok=True)
tmp_fasta_fpath = opjoin(msa_res_dir, "msa_input.fasta")
RequestParser.msa_search(
seqs_pending_msa=seqs_pending_msa,
tmp_fasta_fpath=tmp_fasta_fpath,
msa_res_dir=msa_res_dir,
email=self.email,
)
msa_res_subdirs = RequestParser.msa_postprocess(
seqs_pending_msa=seqs_pending_msa,
msa_res_dir=msa_res_dir,
)
for seq, msa_res_dir in zip(seqs_pending_msa, msa_res_subdirs):
for entity_id in seq_to_entity_id[seq]:
entity_index = int(entity_id) - 1
sequences[entity_index]["proteinChain"]["msa"] = {
"precomputed_msa_dir": msa_res_dir,
"pairing_db": "uniref100",
"pairing_db_fpath": None,
"non_pairing_db_fpath": None,
"search_too": None,
"msa_save_dir": None,
}
input_json_dict["sequences"] = sequences
with open(input_json_path, "w") as f:
json.dump([input_json_dict], f, indent=4)
return input_json_path
@staticmethod
def msa_search(
seqs_pending_msa: Sequence[str],
tmp_fasta_fpath: str,
msa_res_dir: str,
email: str = "",
) -> None:
lines = []
for idx, seq in enumerate(seqs_pending_msa):
lines.append(f">query_{idx}\n")
lines.append(f"{seq}\n")
if (last_line := lines[-1]).endswith("\n"):
lines[-1] = last_line.rstrip("\n")
with open(tmp_fasta_fpath, "w") as f:
for lines in lines:
f.write(lines)
with open(tmp_fasta_fpath, "r") as f:
query_seqs = f.read()
try:
run_mmseqs2_service(
query_seqs,
msa_res_dir,
True,
use_templates=False,
host_url=MMSEQS_SERVICE_HOST_URL,
user_agent="colabfold/1.5.5",
email=email,
)
except Exception as e:
error_message = f"MMSEQS2 failed with the following error message:\n{traceback.format_exc()}"
print(error_message)
@staticmethod
def msa_postprocess(seqs_pending_msa: Sequence[str], msa_res_dir: str) -> None:
def read_m8(m8_file: str) -> Dict[str, str]:
uniref_to_ncbi_taxid = {}
with open(m8_file, "r") as infile:
for line in infile:
line_list = line.replace("\n", "").split("\t")
hit_name = line_list[1]
ncbi_taxid = line_list[2]
uniref_to_ncbi_taxid[hit_name] = ncbi_taxid
return uniref_to_ncbi_taxid
def read_a3m(a3m_file: str) -> Tuple[List[str], List[str]]:
heads = []
seqs = []
# Record the row index. The index before this index is the MSA of Uniref30 DB,
# and the index after this index is the MSA of ColabfoldDB.
uniref_index = 0
with open(a3m_file, "r") as infile:
for idx, line in enumerate(infile):
if line.startswith(">"):
heads.append(line)
if idx == 0:
query_name = line
elif idx > 0 and line == query_name:
uniref_index = idx
else:
seqs.append(line)
return heads, seqs, uniref_index
def make_pairing_and_non_pairing_msa(
query_seq: str,
seq_dir: str,
raw_a3m_path: str,
uniref_to_ncbi_taxid: Mapping[str, str],
) -> List[str]:
heads, msa_seqs, uniref_index = read_a3m(raw_a3m_path)
uniref100_lines = [">query\n", f"{query_seq}\n"]
other_lines = [">query\n", f"{query_seq}\n"]
for idx, (head, msa_seq) in enumerate(zip(heads, msa_seqs)):
if msa_seq.rstrip("\n") == query_seq:
continue
uniref_id = head.split("\t")[0][1:]
ncbi_taxid = uniref_to_ncbi_taxid.get(uniref_id, None)
if (ncbi_taxid is not None) and (idx < (uniref_index // 2)):
if not uniref_id.startswith("UniRef100_"):
head = head.replace(
uniref_id, f"UniRef100_{uniref_id}_{ncbi_taxid}/"
)
else:
head = head.replace(uniref_id, f"{uniref_id}_{ncbi_taxid}/")
uniref100_lines.extend([head, msa_seq])
else:
other_lines.extend([head, msa_seq])
with open(opjoin(seq_dir, "pairing.a3m"), "w") as f:
for line in uniref100_lines:
f.write(line)
with open(opjoin(seq_dir, "non_pairing.a3m"), "w") as f:
for line in other_lines:
f.write(line)
def make_non_pairing_msa_only(
query_seq: str,
seq_dir: str,
raw_a3m_path: str,
):
heads, msa_seqs, _ = read_a3m(raw_a3m_path)
other_lines = [">query\n", f"{query_seq}\n"]
for head, msa_seq in zip(heads, msa_seqs):
if msa_seq.rstrip("\n") == query_seq:
continue
other_lines.extend([head, msa_seq])
with open(opjoin(seq_dir, "non_pairing.a3m"), "w") as f:
for line in other_lines:
f.write(line)
def make_dummy_msa(
query_seq: str, seq_dir: str, msa_type: str = "both"
) -> None:
if msa_type == "both":
fnames = ["pairing.a3m", "non_pairing.a3m"]
elif msa_type == "pairing":
fnames = ["pairing.a3m"]
elif msa_type == "non_pairing":
fnames = ["non_pairing.a3m"]
else:
raise NotImplementedError
for fname in fnames:
with open(opjoin(seq_dir, fname), "w") as f:
f.write(">query\n")
f.write(f"{query_seq}\n")
msa_res_subdirs = []
for seq_idx, query_seq in enumerate(seqs_pending_msa):
os.makedirs(
seq_dir := os.path.abspath(opjoin(msa_res_dir, str(seq_idx))),
exist_ok=True,
)
if opexists(raw_a3m_path := opjoin(msa_res_dir, f"{seq_idx}.a3m")):
if opexists(m8_path := opjoin(msa_res_dir, "uniref_tax.m8")):
uniref_to_ncbi_taxid = read_m8(m8_path)
make_pairing_and_non_pairing_msa(
query_seq=query_seq,
seq_dir=seq_dir,
raw_a3m_path=raw_a3m_path,
uniref_to_ncbi_taxid=uniref_to_ncbi_taxid,
)
else:
make_non_pairing_msa_only(
query_seq=query_seq,
seq_dir=seq_dir,
raw_a3m_path=raw_a3m_path,
)
make_dummy_msa(
query_seq=query_seq, seq_dir=seq_dir, msa_type="pairing"
)
else:
print(
f"Failed in searching MSA for \n{query_seq}\nusing the sequence itself as MSA."
)
make_dummy_msa(query_seq=query_seq, seq_dir=seq_dir)
msa_res_subdirs.append(seq_dir)
return msa_res_subdirs
def launch(self) -> None:
input_json_path = self.get_data_json()
checkpoint_path = self.get_model()
entry_path = os.path.abspath(
opjoin(os.path.dirname(self.fpath), "../../runner/inference.py")
)
command_parts = [
"export LAYERNORM_TYPE=fast_layernorm;",
f"python3 {entry_path}",
f"--load_checkpoint_path {checkpoint_path}",
f"--dump_dir {self.request_dir}",
f"--input_json_path {input_json_path}",
f"--need_atom_confidence {self.request['atom_confidence']}",
f"--use_msa {self.request['use_msa']}",
"--num_workers 0",
"--dtype bf16",
"--use_deepspeed_evo_attention True",
"--sample_diffusion.step_scale_eta 1.5",
]
if "model_seeds" in self.request:
seeds = ",".join([str(seed) for seed in self.request["model_seeds"]])
command_parts.extend([f'--seeds "{seeds}"'])
for key in ["N_sample", "N_step"]:
if key in self.request:
command_parts.extend([f"--sample_diffusion.{key} {self.request[key]}"])
if "N_cycle" in self.request:
command_parts.extend([f"--model.N_cycle {self.request['N_cycle']}"])
command = " ".join(command_parts)
print(f"Launching inference process with the command below:\n{command}")
subprocess.call(command, shell=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--request_json_path",
type=str,
required=True,
help="Path to the request JSON file.",
)
parser.add_argument(
"--request_dir", type=str, required=True, help="Path to the request directory."
)
parser.add_argument(
"--email", type=str, required=False, default="", help="Your email address."
)
args = parser.parse_args()
parser = RequestParser(
request_json_path=args.request_json_path,
request_dir=args.request_dir,
email=args.email,
)
parser.launch()
|