File size: 16,555 Bytes
89c0b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import tempfile
import time
import uuid
from pathlib import Path
from typing import List, Optional, Union
import click
import tqdm
from Bio import SeqIO
from configs.configs_base import configs as configs_base
from configs.configs_data import data_configs
from configs.configs_inference import inference_configs
from rdkit import Chem
from runner.inference import InferenceRunner, download_infercence_cache, infer_predict
from runner.msa_search import msa_search, update_infer_json
from protenix.config import parse_configs
from protenix.data.json_maker import cif_to_input_json
from protenix.data.json_parser import lig_file_to_atom_info
from protenix.data.utils import pdb_to_cif
from protenix.utils.logger import get_logger
logger = get_logger(__name__)
def init_logging():
LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
logging.basicConfig(
format=LOG_FORMAT,
level=logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",
filemode="w",
)
def generate_infer_jsons(
protein_msa_res: dict, ligand_file: str, seeds: List[int] = [101]
) -> List[str]:
protein_chains = []
if len(protein_msa_res) <= 0:
raise RuntimeError(f"invalid `protein_msa_res` data in {protein_msa_res}")
for key, value in protein_msa_res.items():
protein_chain = {}
protein_chain["proteinChain"] = {}
protein_chain["proteinChain"]["sequence"] = key
protein_chain["proteinChain"]["count"] = value.get("count", 1)
protein_chain["proteinChain"]["msa"] = value
protein_chains.append(protein_chain)
if os.path.isdir(ligand_file):
ligand_files = [
str(file) for file in Path(ligand_file).rglob("*") if file.is_file()
]
if len(ligand_files) == 0:
raise RuntimeError(
f"can not read a valid `sdf` or `smi` ligand_file in {ligand_file}"
)
elif os.path.isfile(ligand_file):
ligand_files = [ligand_file]
else:
raise RuntimeError(f"can not read a special ligand_file: {ligand_file}")
invalid_ligand_files = []
sdf_ligand_files = []
smi_ligand_files = []
tmp_json_name = uuid.uuid4().hex
current_local_dir = (
f"/tmp/{time.strftime('%Y-%m-%d', time.localtime())}/{tmp_json_name}"
)
current_local_json_dir = (
f"/tmp/{time.strftime('%Y-%m-%d', time.localtime())}/{tmp_json_name}_jsons"
)
os.makedirs(current_local_dir, exist_ok=True)
os.makedirs(current_local_json_dir, exist_ok=True)
for li_file in ligand_files:
try:
if li_file.endswith(".smi"):
smi_ligand_files.append(li_file)
elif li_file.endswith(".sdf"):
suppl = Chem.SDMolSupplier(li_file)
if len(suppl) <= 1:
lig_file_to_atom_info(li_file)
sdf_ligand_files.append([li_file])
else:
sdf_basename = os.path.join(
current_local_dir, os.path.basename(li_file).split(".")[0]
)
li_files = []
for idx, mol in enumerate(suppl):
p_sdf_path = f"{sdf_basename}_part_{idx}.sdf"
writer = Chem.SDWriter(p_sdf_path)
writer.write(mol)
writer.close()
li_files.append(p_sdf_path)
lig_file_to_atom_info(p_sdf_path)
sdf_ligand_files.append(li_files)
else:
lig_file_to_atom_info(li_file)
sdf_ligand_files.append(li_file)
except Exception as exc:
logging.info(f" lig_file_to_atom_info failed with error info: {exc}")
invalid_ligand_files.append(li_file)
logger.info(f"the json to infer will be save to {current_local_json_dir}")
infer_json_files = []
for li_files in sdf_ligand_files:
one_infer_seq = protein_chains[:]
for li_file in li_files:
ligand_name = os.path.basename(li_file).split(".")[0]
ligand_chain = {}
ligand_chain["ligand"] = {}
ligand_chain["ligand"]["ligand"] = f"FILE_{li_file}"
ligand_chain["ligand"]["count"] = 1
one_infer_seq.append(ligand_chain)
one_infer_json = [{"sequences": one_infer_seq, "name": ligand_name}]
json_file_name = os.path.join(
current_local_json_dir, f"{ligand_name}_sdf_{uuid.uuid4().hex}.json"
)
with open(json_file_name, "w") as f:
json.dump(one_infer_json, f, indent=4)
infer_json_files.append(json_file_name)
for smi_ligand_file in smi_ligand_files:
one_infer_seq = protein_chains[:]
with open(smi_ligand_file, "r") as f:
smile_list = f.readlines()
one_infer_seq = protein_chains[:]
ligand_name = os.path.basename(smi_ligand_file).split(".")[0]
for smile in smile_list:
normalize_smile = smile.replace("\n", "")
ligand_chain = {}
ligand_chain["ligand"] = {}
ligand_chain["ligand"]["ligand"] = normalize_smile
ligand_chain["ligand"]["count"] = 1
one_infer_seq.append(ligand_chain)
one_infer_json = [{"sequences": one_infer_seq, "name": ligand_name}]
json_file_name = os.path.join(
current_local_json_dir, f"{ligand_name}_smi_{uuid.uuid4().hex}.json"
)
with open(json_file_name, "w") as f:
json.dump(one_infer_json, f, indent=4)
infer_json_files.append(json_file_name)
if len(invalid_ligand_files) > 0:
logger.warning(
f"{len(invalid_ligand_files)} sdf file is invaild, one of them is {invalid_ligand_files[0]}"
)
return infer_json_files
def get_default_runner(seeds: Optional[list] = None) -> InferenceRunner:
configs_base["use_deepspeed_evo_attention"] = (
os.environ.get("USE_DEEPSPEED_EVO_ATTTENTION", False) == "true"
)
configs_base["model"]["N_cycle"] = 10
configs_base["sample_diffusion"]["N_sample"] = 5
configs_base["sample_diffusion"]["N_step"] = 200
configs = {**configs_base, **{"data": data_configs}, **inference_configs}
configs = parse_configs(
configs=configs,
fill_required_with_null=True,
)
if seeds is not None:
configs.seeds = seeds
download_infercence_cache(configs, model_version="v0.2.0")
return InferenceRunner(configs)
def inference_jsons(
json_file: str,
out_dir: str = "./output",
use_msa_server: bool = False,
seeds: list = [101],
) -> None:
"""
infer_json: json file or directory, will run infer with these jsons
"""
infer_jsons = []
if os.path.isdir(json_file):
infer_jsons = [
str(file) for file in Path(json_file).rglob("*") if file.is_file()
]
if len(infer_jsons) == 0:
raise RuntimeError(
f"can not read a valid `sdf` or `smi` ligand_file in {json_file}"
)
elif os.path.isfile(json_file):
infer_jsons = [json_file]
else:
raise RuntimeError(f"can not read a special ligand_file: {json_file}")
infer_jsons = [file for file in infer_jsons if file.endswith(".json")]
logger.info(f"will infer with {len(infer_jsons)} jsons")
if len(infer_jsons) == 0:
return
infer_errors = {}
inference_configs["dump_dir"] = out_dir
inference_configs["input_json_path"] = infer_jsons[0]
runner = get_default_runner(seeds)
configs = runner.configs
for idx, infer_json in enumerate(tqdm.tqdm(infer_jsons)):
try:
configs["input_json_path"] = update_infer_json(
infer_json, out_dir=out_dir, use_msa_server=use_msa_server
)
infer_predict(runner, configs)
except Exception as exc:
infer_errors[infer_json] = str(exc)
if len(infer_errors) > 0:
logger.warning(f"run inference failed: {infer_errors}")
def batch_inference(
protein_msa_res: dict,
ligand_file: str,
out_dir: str = "./output",
seeds: List[int] = [101],
) -> None:
"""
ligand_file: ligand file or directory, should be in sdf format or smi with smlies list;
protein_msa_res: the msa result for `protein`, like:
{ "MGHHHHHHHHHHSSGH": {
"precomputed_msa_dir": "/path/to/msa_pairing/result/msa/1",
"pairing_db": "uniref100"
},
"MAEVIRSSAFWRSFPIFEEFDSE": {
"precomputed_msa_dir": "/path/to/msa_pairing/result/msa/2",
"pairing_db": "uniref100"
}
}
out_dir: the infer outout dir, default is `./output`
"""
infer_jsons = generate_infer_jsons(protein_msa_res, ligand_file, seeds)
logger.info(f"will infer with {len(infer_jsons)} jsons")
if len(infer_jsons) == 0:
return
infer_errors = {}
inference_configs["dump_dir"] = out_dir
inference_configs["input_json_path"] = infer_jsons[0]
runner = get_default_runner(seeds=seeds)
configs = runner.configs
for infer_json in tqdm.tqdm(infer_jsons):
try:
configs["input_json_path"] = update_infer_json(infer_json, out_dir)
infer_predict(runner, configs)
except Exception as exc:
infer_errors[infer_json] = str(exc)
if len(infer_errors) > 0:
logger.warning(f"run inference failed: {infer_errors}")
@click.group()
def protenix_cli():
return
@click.command()
@click.option("--input", type=str, help="json files or dir for inference")
@click.option("--out_dir", default="./output", type=str, help="infer result dir")
@click.option(
"--seeds", type=str, default="101", help="the inference seed, split by comma"
)
@click.option("--use_msa_server", is_flag=True, help="do msa search or not")
def predict(input, out_dir, seeds, use_msa_server):
"""
predict: Run predictions with protenix.
:param input, out_dir, use_msa_server
:return:
"""
init_logging()
logger.info(
f"run infer with input={input}, out_dir={out_dir}, use_msa_server={use_msa_server}"
)
seeds = list(map(int, seeds.split(",")))
inference_jsons(input, out_dir, use_msa_server, seeds=seeds)
@click.command()
@click.option(
"--input", type=str, help="pdb or cif files to generate jsons for inference"
)
@click.option("--out_dir", type=str, default="./output", help="dir to save json files")
@click.option(
"--altloc",
default="first",
type=str,
help=" Select the first altloc conformation of each residue in the input file, \
or specify the altloc letter for selection. For example, 'first', 'A', 'B', etc.",
)
@click.option(
"--assembly_id",
default=None,
type=str,
help="Extends the structure based on the Assembly ID in \
the input file. The default is no extension",
)
def tojson(input, out_dir="./output", altloc="first", assembly_id=None):
"""
tojson: convert pdb/cif files or dir to json files for predict.
:param input, out_dir, altloc, assembly_id
:return:
"""
init_logging()
logger.info(
f"run tojson with input={input}, out_dir={out_dir}, altloc={altloc}, assembly_id={assembly_id}"
)
input_files = []
if not os.path.exists(input):
raise RuntimeError(f"input file {input} not exists.")
if os.path.isdir(input):
input_files.extend(
[str(file) for file in Path(input).rglob("*") if file.is_file()]
)
elif os.path.isfile(input):
input_files.append(input)
else:
raise RuntimeError(f"can not read a special file: {input}")
input_files = [
file for file in input_files if file.endswith(".pdb") or file.endswith(".cif")
]
if len(input_files) == 0:
raise RuntimeError(f"can not read a valid `pdb` or `cif` file from {input}")
logger.info(
f"will tojson jsons for {len(input_files)} input files with `pdb` or `cif` format."
)
output_jsons = []
os.makedirs(out_dir, exist_ok=True)
for input_file in input_files:
stem, _ = os.path.splitext(os.path.basename(input_file))
pdb_name = stem[:20]
output_json = os.path.join(out_dir, f"{pdb_name}-{uuid.uuid4().hex}.json")
if input_file.endswith(".pdb"):
with tempfile.NamedTemporaryFile(suffix=".cif") as tmp:
tmp_cif_file = tmp.name
pdb_to_cif(input_file, tmp_cif_file)
cif_to_input_json(
tmp_cif_file,
assembly_id=assembly_id,
altloc=altloc,
sample_name=pdb_name,
output_json=output_json,
)
elif input_file.endswith(".cif"):
cif_to_input_json(
input_file,
assembly_id=assembly_id,
altloc=altloc,
output_json=output_json,
)
else:
raise RuntimeError(f"can not read a special ligand_file: {input_file}")
output_jsons.append(output_json)
logger.info(f"{len(output_jsons)} generated jsons have been save to {out_dir}.")
return output_jsons
@click.command()
@click.option(
"--input", type=str, help="file to do msa search, support `json` or `fasta` format"
)
@click.option("--out_dir", type=str, default="./output", help="dir to save msa results")
def msa(input, out_dir) -> Union[str, dict]:
"""
msa: do msa search by mmseqs. If input is in `fasta`, it should all be proteinChain.
:param input, out_dir
:return:
"""
init_logging()
logger.info(f"run msa with input={input}, out_dir={out_dir}")
if input.endswith(".json"):
msa_input_json = update_infer_json(input, out_dir, use_msa_server=True)
logger.info(f"msa results have been update to {msa_input_json}")
return msa_input_json
elif input.endswith(".fasta"):
records = list(SeqIO.parse(input, "fasta"))
protein_seqs = []
for seq in records:
protein_seqs.append(str(seq.seq))
protein_seqs = sorted(protein_seqs)
msa_res_subdirs = msa_search(protein_seqs, out_dir)
assert len(msa_res_subdirs) == len(msa_res_subdirs), "msa search failed"
fasta_msa_res = dict(zip(protein_seqs, msa_res_subdirs))
logger.info(
f"msa result is: {fasta_msa_res}, and it has been save to {out_dir}"
)
return fasta_msa_res
else:
raise RuntimeError(f"only support `json` or `fasta` format, but got : {input}")
protenix_cli.add_command(predict)
protenix_cli.add_command(tojson)
protenix_cli.add_command(msa)
def test_batch_inference():
ligands_dir = "../examples/ligands"
protein_msa_res = {
"MASWSHPQFEKGGTHVAETSAPTRSEPDTRVLTLPGTASAPEFRLIDIDGLLNNRATTDVRDLGSGRLNAWGNSFPAAELPAPGSLITVAGIPFTWANAHARGDNIRCEGQVVDIPPGQYDWIYLLAASERRSEDTIWAHYDDGHADPLRVGISDFLDGTPAFGELSAFRTSRMHYPHHVQEGLPTTMWLTRVGMPRHGVARSLRLPRSVAMHVFALTLRTAAAVRLAEGATT": {
"precomputed_msa_dir": "../examples/7wux/msa/1",
"pairing_db": "uniref100",
},
"MGSSHHHHHHSQDPNSTTTAPPVELWTRDLGSCLHGTLATALIRDGHDPVTVLGAPWEFRRRPGAWSSEEYFFFAEPDSLAGRLALYHPFESTWHRSDGDGVDDLREALAAGVLPIAAVDNFHLPFRPAFHDVHAAHLLVVYRITETEVYVSDAQPPAFQGAIPLADFLASWGSLNPPDDADVFFSASPSGRRWLRTRMTGPVPEPDRHWVGRVIRENVARYRQEPPADTQTGLPGLRRYLDELCALTPGTNAASEALSELYVISWNIQAQSGLHAEFLRAHSVKWRIPELAEAAAGVDAVAHGWTGVRMTGAHSRVWQRHRPAELRGHATALVRRLEAALDLLELAADAVS": {
"precomputed_msa_dir": "../examples/7wux/msa/2",
"pairing_db": "uniref100",
},
}
out_dir = "./infer_output"
batch_inference(protein_msa_res, ligands_dir, out_dir=out_dir)
if __name__ == "__main__":
init_logging()
test_batch_inference()
|