File size: 23,007 Bytes
89c0b51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright 2024 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import datetime
import logging
import os
import time
from contextlib import nullcontext

import torch
import torch.distributed as dist
import wandb
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm

from configs.configs_base import configs as configs_base
from configs.configs_data import data_configs
from protenix.config import parse_configs, parse_sys_args
from protenix.config.config import save_config
from protenix.data.dataloader import get_dataloaders
from protenix.metrics.lddt_metrics import LDDTMetrics
from protenix.model.loss import ProtenixLoss
from protenix.model.protenix_edit import Protenix
from protenix.utils.distributed import DIST_WRAPPER
from protenix.utils.lr_scheduler import get_lr_scheduler
from protenix.utils.metrics import SimpleMetricAggregator
from protenix.utils.permutation.permutation import SymmetricPermutation
from protenix.utils.seed import seed_everything
from protenix.utils.torch_utils import autocasting_disable_decorator, to_device
from protenix.utils.training import get_optimizer, is_loss_nan_check
from runner.ema import EMAWrapper

# Disable WANDB's console output capture to reduce unnecessary logging
os.environ["WANDB_CONSOLE"] = "off"


class AF3Trainer(object):
    def __init__(self, configs):
        self.configs = configs
        self.init_env()
        self.init_basics()
        self.init_log()
        self.init_model()
        self.init_loss()
        self.init_data()
        self.try_load_checkpoint()

    def init_basics(self):
        # Step means effective step considering accumulation
        self.step = 0
        # Global_step equals to self.step * self.iters_to_accumulate
        self.global_step = 0
        self.start_step = 0
        # Add for grad accumulation, it can increase real batch size
        self.iters_to_accumulate = self.configs.iters_to_accumulate

        self.run_name = self.configs.run_name + "_" + time.strftime("%Y%m%d_%H%M%S")
        run_names = DIST_WRAPPER.all_gather_object(
            self.run_name if DIST_WRAPPER.rank == 0 else None
        )
        self.run_name = [name for name in run_names if name is not None][0]
        self.run_dir = f"{self.configs.base_dir}/{self.run_name}"
        self.checkpoint_dir = f"{self.run_dir}/checkpoints"
        self.prediction_dir = f"{self.run_dir}/predictions"
        self.structure_dir = f"{self.run_dir}/structures"
        self.dump_dir = f"{self.run_dir}/dumps"
        self.error_dir = f"{self.run_dir}/errors"

        if DIST_WRAPPER.rank == 0:
            os.makedirs(self.run_dir)
            os.makedirs(self.checkpoint_dir)
            os.makedirs(self.prediction_dir)
            os.makedirs(self.structure_dir)
            os.makedirs(self.dump_dir)
            os.makedirs(self.error_dir)
            save_config(
                self.configs,
                os.path.join(self.configs.base_dir, self.run_name, "config.yaml"),
            )

        self.print(
            f"Using run name: {self.run_name}, run dir: {self.run_dir}, checkpoint_dir: "
            + f"{self.checkpoint_dir}, prediction_dir: {self.prediction_dir}, structure_dir: "
            + f"{self.structure_dir}, error_dir: {self.error_dir}"
        )

    def init_log(self):
        if self.configs.use_wandb and DIST_WRAPPER.rank == 0:
            wandb.init(
                project=self.configs.project,
                name=self.run_name,
                config=vars(self.configs),
                id=self.configs.wandb_id or None,
            )
        self.train_metric_wrapper = SimpleMetricAggregator(["avg"])

    def init_env(self):
        """Init pytorch/cuda envs."""
        logging.info(
            f"Distributed environment: world size: {DIST_WRAPPER.world_size}, "
            + f"global rank: {DIST_WRAPPER.rank}, local rank: {DIST_WRAPPER.local_rank}"
        )
        self.use_cuda = torch.cuda.device_count() > 0
        if self.use_cuda:
            self.device = torch.device("cuda:{}".format(DIST_WRAPPER.local_rank))
            os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
            all_gpu_ids = ",".join(str(x) for x in range(torch.cuda.device_count()))
            devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
            logging.info(
                f"LOCAL_RANK: {DIST_WRAPPER.local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]"
            )
            torch.cuda.set_device(self.device)
        else:
            self.device = torch.device("cpu")
        if DIST_WRAPPER.world_size > 1:
            timeout_seconds = int(os.environ.get("NCCL_TIMEOUT_SECOND", 600))
            dist.init_process_group(
                backend="nccl", timeout=datetime.timedelta(seconds=timeout_seconds)
            )
        # All ddp process got the same seed
        seed_everything(
            seed=self.configs.seed,
            deterministic=self.configs.deterministic,
        )

        if self.configs.use_deepspeed_evo_attention:
            env = os.getenv("CUTLASS_PATH", None)
            print(f"env: {env}")
            assert (
                env is not None
            ), "if use ds4sci, set env as https://www.deepspeed.ai/tutorials/ds4sci_evoformerattention/"
        logging.info("Finished init ENV.")

    def init_loss(self):
        self.loss = ProtenixLoss(self.configs)
        self.symmetric_permutation = SymmetricPermutation(
            self.configs, error_dir=self.error_dir
        )
        self.lddt_metrics = LDDTMetrics(self.configs)

    def init_model(self):
        self.raw_model = Protenix(self.configs).to(self.device)
        self.use_ddp = False
        if DIST_WRAPPER.world_size > 1:
            self.print(f"Using DDP")
            self.use_ddp = True
            # Fix DDP/checkpoint https://discuss.pytorch.org/t/ddp-and-gradient-checkpointing/132244
            self.model = DDP(
                self.raw_model,
                find_unused_parameters=self.configs.find_unused_parameters,
                device_ids=[DIST_WRAPPER.local_rank],
                output_device=DIST_WRAPPER.local_rank,
                static_graph=True,
            )
        else:
            self.model = self.raw_model

        if self.configs.get("ema_decay", -1) > 0:
            assert self.configs.ema_decay < 1
            self.ema_wrapper = EMAWrapper(
                self.model,
                self.configs.ema_decay,
                self.configs.ema_mutable_param_keywords,
            )
            self.ema_wrapper.register()

        torch.cuda.empty_cache()
        self.optimizer = get_optimizer(self.configs, self.model)
        self.init_scheduler()

    def init_scheduler(self, **kwargs):
        self.lr_scheduler = get_lr_scheduler(self.configs, self.optimizer, **kwargs)

    def init_data(self):
        self.train_dl, self.test_dls = get_dataloaders(
            self.configs,
            DIST_WRAPPER.world_size,
            seed=self.configs.seed,
            error_dir=self.error_dir,
        )

    def save_checkpoint(self, ema_suffix=""):
        if DIST_WRAPPER.rank == 0:
            path = f"{self.checkpoint_dir}/{self.step}{ema_suffix}.pt"
            checkpoint = {
                "model": self.model.state_dict(),
                "optimizer": self.optimizer.state_dict(),
                "scheduler": (
                    self.lr_scheduler.state_dict()
                    if self.lr_scheduler is not None
                    else None
                ),
                "step": self.step,
            }
            torch.save(checkpoint, path)
            self.print(f"Saved checkpoint to {path}")

    def try_load_checkpoint(self):

        def _load_checkpoint(
            checkpoint_path: str,
            load_params_only: bool,
            skip_load_optimizer: bool = False,
            skip_load_step: bool = False,
            skip_load_scheduler: bool = False,
        ):
            if not os.path.exists(checkpoint_path):
                raise Exception(f"Given checkpoint path not exist [{checkpoint_path}]")
            self.print(
                f"Loading from {checkpoint_path}, strict: {self.configs.load_strict}"
            )
            checkpoint = torch.load(checkpoint_path, self.device)
            sample_key = [k for k in checkpoint["model"].keys()][0]
            self.print(f"Sampled key: {sample_key}")
            if sample_key.startswith("module.") and not self.use_ddp:
                # DDP checkpoint has module. prefix
                checkpoint["model"] = {
                    k[len("module.") :]: v for k, v in checkpoint["model"].items()
                }

            self.model.load_state_dict(
                state_dict=checkpoint["model"],
                strict=self.configs.load_strict,
            )
            if not load_params_only:
                if not skip_load_optimizer:
                    self.print(f"Loading optimizer state")
                    self.optimizer.load_state_dict(checkpoint["optimizer"])
                if not skip_load_step:
                    self.print(f"Loading checkpoint step")
                    self.step = checkpoint["step"] + 1
                    self.start_step = self.step
                    self.global_step = self.step * self.iters_to_accumulate
                if not skip_load_scheduler:
                    self.print(f"Loading scheduler state")
                    self.lr_scheduler.load_state_dict(checkpoint["scheduler"])
                else:
                    # reinitialize LR scheduler using the updated optimizer and step
                    self.init_scheduler(last_epoch=self.step - 1)
            self.print(f"Finish loading checkpoint, current step: {self.step}")

        # Load EMA model parameters
        if self.configs.load_ema_checkpoint_path:
            _load_checkpoint(
                self.configs.load_ema_checkpoint_path,
                load_params_only=True,
            )
            self.ema_wrapper.register()

        # Load model
        if self.configs.load_checkpoint_path:
            _load_checkpoint(
                self.configs.load_checkpoint_path,
                self.configs.load_params_only,
                skip_load_optimizer=self.configs.skip_load_optimizer,
                skip_load_scheduler=self.configs.skip_load_scheduler,
                skip_load_step=self.configs.skip_load_step,
            )

    def print(self, msg: str):
        if DIST_WRAPPER.rank == 0:
            logging.info(msg)

    def model_forward(self, batch: dict, mode: str = "train") -> tuple[dict, dict]:
        assert mode in ["train", "eval"]
        batch["pred_dict"], batch["label_dict"], log_dict = self.model(
            input_feature_dict=batch["input_feature_dict"],
            label_dict=batch["label_dict"],
            label_full_dict=batch["label_full_dict"],
            mode=mode,
            current_step=self.step if mode == "train" else None,
            symmetric_permutation=self.symmetric_permutation,
        )
        return batch, log_dict

    def get_loss(
        self, batch: dict, mode: str = "train"
    ) -> tuple[torch.Tensor, dict, dict]:
        assert mode in ["train", "eval"]

        loss, loss_dict = autocasting_disable_decorator(self.configs.skip_amp.loss)(
            self.loss
        )(
            feat_dict=batch["input_feature_dict"],
            pred_dict=batch["pred_dict"],
            label_dict=batch["label_dict"],
            mode=mode,
        )
        return loss, loss_dict, batch

    @torch.no_grad()
    def get_metrics(self, batch: dict) -> dict:

        lddt_dict = self.lddt_metrics.compute_lddt(
            batch["pred_dict"], batch["label_dict"]
        )

        return lddt_dict

    @torch.no_grad()
    def aggregate_metrics(self, lddt_dict: dict, batch: dict) -> dict:

        simple_metrics, _ = self.lddt_metrics.aggregate_lddt(
            lddt_dict, batch["pred_dict"]["summary_confidence"]
        )

        return simple_metrics
    
    @torch.no_grad()
    def get_recovery(self, pred_code, gt_code):
        pred_code = torch.clamp(pred_code, min=-10, max=10)
        epsilon = 1e-6
        predicted_classes = (torch.sigmoid(pred_code) > 0.5).float()
        # Use the epsilon to ensure no division by zero in recovery computation
        recovery = ((predicted_classes == gt_code.float()).float().mean(dim=-1)).clamp(min=epsilon)
        return recovery.mean()

    @torch.no_grad()
    def evaluate(self, mode: str = "eval"):
        if not self.configs.eval_ema_only:
            self._evaluate()
        if hasattr(self, "ema_wrapper"):
            self.ema_wrapper.apply_shadow()
            self._evaluate(ema_suffix=f"ema{self.ema_wrapper.decay}_", mode=mode)
            self.ema_wrapper.restore()

    @torch.no_grad()
    def _evaluate(self, ema_suffix: str = "", mode: str = "eval"):
        # Init Metric Aggregator
        simple_metric_wrapper = SimpleMetricAggregator(["avg"])
        eval_precision = {
            "fp32": torch.float32,
            "bf16": torch.bfloat16,
            "fp16": torch.float16,
        }[self.configs.dtype]
        enable_amp = (
            torch.autocast(device_type="cuda", dtype=eval_precision)
            if torch.cuda.is_available()
            else nullcontext()
        )
        self.model.eval()

        for test_name, test_dl in self.test_dls.items():
            self.print(f"Testing on {test_name}")
            evaluated_pids = []
            total_batch_num = len(test_dl)
            for index, batch in enumerate(tqdm(test_dl)):
                batch = to_device(batch, self.device)
                pid = batch["basic"]["pdb_id"]

                if index + 1 == total_batch_num and DIST_WRAPPER.world_size > 1:
                    # Gather all pids across ranks for avoiding duplicated evaluations when drop_last = False
                    all_data_ids = DIST_WRAPPER.all_gather_object(evaluated_pids)
                    dedup_ids = set(sum(all_data_ids, []))
                    if pid in dedup_ids:
                        print(
                            f"Rank {DIST_WRAPPER.rank}: Drop data_id {pid} as it is already evaluated."
                        )
                        break
                evaluated_pids.append(pid)

                simple_metrics = {}
                with enable_amp:
                    # Model forward
                    batch, _ = self.model_forward(batch, mode=mode)
                    # Loss forward
                    loss, loss_dict, batch = self.get_loss(batch, mode="eval")
                    # lDDT metrics
                    lddt_dict = self.get_metrics(batch)
                    lddt_metrics = self.aggregate_metrics(lddt_dict, batch)
                    simple_metrics.update(
                        {k: v for k, v in lddt_metrics.items() if "diff" not in k}
                    )
                    simple_metrics.update(loss_dict)

                # Metrics
                for key, value in simple_metrics.items():
                    simple_metric_wrapper.add(
                        f"{ema_suffix}{key}", value, namespace=test_name
                    )

                del batch, simple_metrics
                if index % 5 == 0:
                    # Release some memory periodically
                    torch.cuda.empty_cache()

            metrics = simple_metric_wrapper.calc()
            self.print(f"Step {self.step}, eval {test_name}: {metrics}")
            if self.configs.use_wandb and DIST_WRAPPER.rank == 0:
                wandb.log(metrics, step=self.step)

    def update(self):
        # Clip the gradient
        if self.configs.grad_clip_norm != 0.0:
            torch.nn.utils.clip_grad_norm_(
                self.model.parameters(), self.configs.grad_clip_norm
            )

    def train_step(self, batch: dict):
        self.model.train()
        # FP16 training has not been verified yet
        train_precision = {
            "fp32": torch.float32,
            "bf16": torch.bfloat16,
            "fp16": torch.float16,
        }[self.configs.dtype]
        enable_amp = (
            torch.autocast(
                device_type="cuda", dtype=train_precision, cache_enabled=False
            )
            if torch.cuda.is_available()
            else nullcontext()
        )

        scaler = torch.GradScaler(
            device="cuda" if torch.cuda.is_available() else "cpu",
            enabled=(self.configs.dtype == "float16"),
        )

        with enable_amp:
            batch, _ = self.model_forward(batch, mode="train")
            loss, loss_dict, _ = self.get_loss(batch, mode="train")
            recovery = self.get_recovery(batch["pred_dict"]['watermark'], batch["label_dict"]['watermark'])

        if self.configs.dtype in ["bf16", "fp32"]:
            if is_loss_nan_check(loss):
                self.print(f"Skip iteration with NaN loss: {self.step} steps")
                loss = torch.tensor(0.0, device=loss.device, requires_grad=True)
        scaler.scale(loss / self.iters_to_accumulate).backward()

        # For simplicity, the global training step is used
        if (self.global_step + 1) % self.iters_to_accumulate == 0:
            self.print(
                f"self.step {self.step}, self.iters_to_accumulate: {self.iters_to_accumulate}"
            )
            # Unscales the gradients of optimizer's assigned parameters in-place
            scaler.unscale_(self.optimizer)
            # Do grad clip only
            self.update()
            scaler.step(self.optimizer)
            scaler.update()
            self.optimizer.zero_grad(set_to_none=True)
            self.lr_scheduler.step()
        for key, value in loss_dict.items():
            if "loss" not in key:
                continue
            self.train_metric_wrapper.add(key, value, namespace="train")
        self.train_metric_wrapper.add('recovery', recovery, namespace="train")
        torch.cuda.empty_cache()

    def progress_bar(self, desc: str = ""):
        if DIST_WRAPPER.rank != 0:
            return
        if self.global_step % (
            self.configs.eval_interval * self.iters_to_accumulate
        ) == 0 or (not hasattr(self, "_ipbar")):
            # Start a new progress bar
            self._pbar = tqdm(
                range(
                    self.global_step
                    % (self.iters_to_accumulate * self.configs.eval_interval),
                    self.iters_to_accumulate * self.configs.eval_interval,
                )
            )
            self._ipbar = iter(self._pbar)

        step = next(self._ipbar)
        self._pbar.set_description(
            f"[step {self.step}: {step}/{self.iters_to_accumulate * self.configs.eval_interval}] {desc}"
        )
        return

    def run(self):
        """
        Main entry for the AF3Trainer.

        This function handles the training process, evaluation, logging, and checkpoint saving.
        """
        if self.configs.eval_only or self.configs.eval_first:
            self.evaluate()
            if self.configs.eval_only:
                return
        use_ema = hasattr(self, "ema_wrapper")
        self.print(f"Using ema: {use_ema}")

        while True:
            for batch in self.train_dl:
                is_update_step = (self.global_step + 1) % self.iters_to_accumulate == 0
                is_last_step = (self.step + 1) == self.configs.max_steps
                step_need_log = (self.step + 1) % self.configs.log_interval == 0

                step_need_eval = (
                    self.configs.eval_interval > 0
                    and (self.step + 1) % self.configs.eval_interval == 0
                )
                step_need_save = (
                    self.configs.checkpoint_interval > 0
                    and (self.step + 1) % self.configs.checkpoint_interval == 0
                )

                is_last_step &= is_update_step
                step_need_log &= is_update_step
                step_need_eval &= is_update_step
                step_need_save &= is_update_step

                batch = to_device(batch, self.device)
                self.progress_bar()
                self.train_step(batch)
                if use_ema:
                    self.ema_wrapper.update()
                if step_need_log or is_last_step:
                    metrics = self.train_metric_wrapper.calc()
                    self.print(f"Step {self.step} train: {metrics}")
                    last_lr = self.lr_scheduler.get_last_lr()[0]
                    if DIST_WRAPPER.rank == 0:
                        if self.configs.use_wandb:
                            wandb.log(
                                {"train/lr": last_lr},
                                step=self.step,
                            )
                        self.print(f"Step {self.step}, lr: {last_lr}")
                    if self.configs.use_wandb and DIST_WRAPPER.rank == 0:
                        wandb.log(metrics, step=self.step)

                if step_need_save or is_last_step:
                    self.save_checkpoint()
                    if use_ema:
                        self.ema_wrapper.apply_shadow()
                        self.save_checkpoint(
                            ema_suffix=f"_ema_{self.ema_wrapper.decay}"
                        )
                        self.ema_wrapper.restore()

                if step_need_eval or is_last_step:
                    self.evaluate()
                self.global_step += 1
                if self.global_step % self.iters_to_accumulate == 0:
                    self.step += 1
                if self.step >= self.configs.max_steps:
                    self.print(f"Finish training after {self.step} steps")
                    break
            if self.step >= self.configs.max_steps:
                break


def main():
    LOG_FORMAT = "%(asctime)s,%(msecs)-3d %(levelname)-8s [%(filename)s:%(lineno)s %(funcName)s] %(message)s"
    logging.basicConfig(
        format=LOG_FORMAT,
        level=logging.INFO,
        datefmt="%Y-%m-%d %H:%M:%S",
        filemode="w",
    )
    configs_base["use_deepspeed_evo_attention"] = (
        os.environ.get("USE_DEEPSPEED_EVO_ATTTENTION", False) == "true"
    )
    configs = {**configs_base, **{"data": data_configs}}
    configs = parse_configs(
        configs,
        parse_sys_args(),
    )

    print(configs.run_name)
    print(configs)
    trainer = AF3Trainer(configs)
    trainer.run()


if __name__ == "__main__":
    main()