Zaixi's picture
Add large file
89c0b51
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for getting templates and calculating template features."""
import abc
import dataclasses
import datetime
import functools
import glob
import json
import logging
import os
import re
from typing import Any, Dict, Mapping, Optional, Sequence, Tuple
import numpy as np
from protenix.data import kalign
from protenix.openfold_local.data import mmcif_parsing, parsers
from protenix.openfold_local.data.errors import Error
from protenix.openfold_local.data.tools.utils import to_date
from protenix.openfold_local.np import residue_constants
class NoChainsError(Error):
"""An error indicating that template mmCIF didn't have any chains."""
class SequenceNotInTemplateError(Error):
"""An error indicating that template mmCIF didn't contain the sequence."""
class NoAtomDataInTemplateError(Error):
"""An error indicating that template mmCIF didn't contain atom positions."""
class TemplateAtomMaskAllZerosError(Error):
"""An error indicating that template mmCIF had all atom positions masked."""
class QueryToTemplateAlignError(Error):
"""An error indicating that the query can't be aligned to the template."""
class CaDistanceError(Error):
"""An error indicating that a CA atom distance exceeds a threshold."""
# Prefilter exceptions.
class PrefilterError(Exception):
"""A base class for template prefilter exceptions."""
class DateError(PrefilterError):
"""An error indicating that the hit date was after the max allowed date."""
class AlignRatioError(PrefilterError):
"""An error indicating that the hit align ratio to the query was too small."""
class DuplicateError(PrefilterError):
"""An error indicating that the hit was an exact subsequence of the query."""
class LengthError(PrefilterError):
"""An error indicating that the hit was too short."""
TEMPLATE_FEATURES = {
"template_aatype": np.int64,
"template_all_atom_mask": np.float32,
"template_all_atom_positions": np.float32,
"template_domain_names": object,
"template_sequence": object,
"template_sum_probs": np.float32,
}
def empty_template_feats(n_res):
return {
"template_aatype": np.zeros(
(0, n_res, len(residue_constants.restypes_with_x_and_gap)), np.float32
),
"template_all_atom_mask": np.zeros(
(0, n_res, residue_constants.atom_type_num), np.float32
),
"template_all_atom_positions": np.zeros(
(0, n_res, residue_constants.atom_type_num, 3), np.float32
),
"template_domain_names": np.array(["".encode()], dtype=object),
"template_sequence": np.array(["".encode()], dtype=object),
"template_sum_probs": np.zeros((0, 1), dtype=np.float32),
}
def _get_pdb_id_and_chain(hit: parsers.TemplateHit) -> Tuple[str, str]:
"""Returns PDB id and chain id for an HHSearch Hit."""
# PDB ID: 4 letters. Chain ID: 1+ alphanumeric letters or "." if unknown.
id_match = re.match(r"[a-zA-Z\d]{4}_[a-zA-Z0-9.]+", hit.name)
if not id_match:
raise ValueError(f"hit.name did not start with PDBID_chain: {hit.name}")
pdb_id, chain_id = id_match.group(0).split("_")
return pdb_id.lower(), chain_id
def _is_after_cutoff(
pdb_id: str,
release_dates: Mapping[str, datetime.datetime],
release_date_cutoff: Optional[datetime.datetime],
) -> bool:
"""Checks if the template date is after the release date cutoff.
Args:
pdb_id: 4 letter pdb code.
release_dates: dictionary mapping PDB ids to their structure release dates.
release_date_cutoff: Max release date that is valid for this query.
Returns:
True if the template release date is after the cutoff, False otherwise.
"""
pdb_id_upper = pdb_id.upper()
if release_date_cutoff is None:
raise ValueError("The release_date_cutoff must not be None.")
if pdb_id_upper in release_dates:
return release_dates[pdb_id_upper] > release_date_cutoff
else:
# Since this is just a quick prefilter to reduce the number of mmCIF files
# we need to parse, we don't have to worry about returning True here.
logging.info("Template structure not in release dates dict: %s", pdb_id)
return False
def _replace_obsolete_references(obsolete_mapping) -> Mapping[str, str]:
"""Generates a new obsolete by tracing all cross-references and store the latest leaf to all referencing nodes"""
obsolete_new = {}
obsolete_keys = obsolete_mapping.keys()
def _new_target(k):
v = obsolete_mapping[k]
if v in obsolete_keys:
return _new_target(v)
return v
for k in obsolete_keys:
obsolete_new[k] = _new_target(k)
return obsolete_new
def _parse_obsolete(obsolete_file_path: str) -> Mapping[str, str]:
"""Parses the data file from PDB that lists which PDB ids are obsolete."""
with open(obsolete_file_path) as f:
result = {}
for line in f:
line = line.strip()
# We skip obsolete entries that don't contain a mapping to a new entry.
if line.startswith("OBSLTE") and len(line) > 30:
# Format: Date From To
# 'OBSLTE 31-JUL-94 116L 216L'
from_id = line[20:24].lower()
to_id = line[29:33].lower()
result[from_id] = to_id
return _replace_obsolete_references(result)
def generate_release_dates_cache(mmcif_dir: str, out_path: str):
dates = {}
for f in os.listdir(mmcif_dir):
if f.endswith(".cif"):
path = os.path.join(mmcif_dir, f)
with open(path, "r") as fp:
mmcif_string = fp.read()
file_id = os.path.splitext(f)[0]
mmcif = mmcif_parsing.parse(file_id=file_id, mmcif_string=mmcif_string)
if mmcif.mmcif_object is None:
logging.info(f"Failed to parse {f}. Skipping...")
continue
mmcif = mmcif.mmcif_object
release_date = mmcif.header["release_date"]
dates[file_id] = release_date
with open(out_path, "r") as fp:
fp.write(json.dumps(dates))
def _parse_release_dates(path: str) -> Mapping[str, datetime.datetime]:
"""Parses release dates file, returns a mapping from PDBs to release dates."""
with open(path, "r") as fp:
data = json.load(fp)
return {
pdb.upper(): to_date(v)
for pdb, d in data.items()
for k, v in d.items()
if k == "release_date"
}
def _assess_hhsearch_hit(
hit: parsers.TemplateHit,
hit_pdb_code: str,
query_sequence: str,
release_dates: Mapping[str, datetime.datetime],
release_date_cutoff: datetime.datetime,
max_subsequence_ratio: float = 0.95,
min_align_ratio: float = 0.1,
) -> bool:
"""Determines if template is valid (without parsing the template mmcif file).
Args:
hit: HhrHit for the template.
hit_pdb_code: The 4 letter pdb code of the template hit. This might be
different from the value in the actual hit since the original pdb might
have become obsolete.
query_sequence: Amino acid sequence of the query.
release_dates: dictionary mapping pdb codes to their structure release
dates.
release_date_cutoff: Max release date that is valid for this query.
max_subsequence_ratio: Exclude any exact matches with this much overlap.
min_align_ratio: Minimum overlap between the template and query.
Returns:
True if the hit passed the prefilter. Raises an exception otherwise.
Raises:
DateError: If the hit date was after the max allowed date.
AlignRatioError: If the hit align ratio to the query was too small.
DuplicateError: If the hit was an exact subsequence of the query.
LengthError: If the hit was too short.
"""
aligned_cols = hit.aligned_cols
align_ratio = aligned_cols / len(query_sequence)
template_sequence = hit.hit_sequence.replace("-", "")
length_ratio = float(len(template_sequence)) / len(query_sequence)
if _is_after_cutoff(hit_pdb_code, release_dates, release_date_cutoff):
date = release_dates[hit_pdb_code.upper()]
raise DateError(
f"Date ({date}) > max template date " f"({release_date_cutoff})."
)
if align_ratio <= min_align_ratio:
raise AlignRatioError(
"Proportion of residues aligned to query too small. "
f"Align ratio: {align_ratio}."
)
# Check whether the template is a large subsequence or duplicate of original
# query. This can happen due to duplicate entries in the PDB database.
duplicate = (
template_sequence in query_sequence and length_ratio > max_subsequence_ratio
)
if duplicate:
raise DuplicateError(
"Template is an exact subsequence of query with large "
f"coverage. Length ratio: {length_ratio}."
)
if len(template_sequence) < 10:
raise LengthError(f"Template too short. Length: {len(template_sequence)}.")
return True
def _find_template_in_pdb(
template_chain_id: str,
template_sequence: str,
mmcif_object: mmcif_parsing.MmcifObject,
) -> Tuple[str, str, int]:
"""Tries to find the template chain in the given pdb file.
This method tries the three following things in order:
1. Tries if there is an exact match in both the chain ID and the sequence.
If yes, the chain sequence is returned. Otherwise:
2. Tries if there is an exact match only in the sequence.
If yes, the chain sequence is returned. Otherwise:
3. Tries if there is a fuzzy match (X = wildcard) in the sequence.
If yes, the chain sequence is returned.
If none of these succeed, a SequenceNotInTemplateError is thrown.
Args:
template_chain_id: The template chain ID.
template_sequence: The template chain sequence.
mmcif_object: The PDB object to search for the template in.
Returns:
A tuple with:
* The chain sequence that was found to match the template in the PDB object.
* The ID of the chain that is being returned.
* The offset where the template sequence starts in the chain sequence.
Raises:
SequenceNotInTemplateError: If no match is found after the steps described
above.
"""
# Try if there is an exact match in both the chain ID and the (sub)sequence.
pdb_id = mmcif_object.file_id
chain_sequence = mmcif_object.chain_to_seqres.get(template_chain_id)
if chain_sequence and (template_sequence in chain_sequence):
logging.info("Found an exact template match %s_%s.", pdb_id, template_chain_id)
mapping_offset = chain_sequence.find(template_sequence)
return chain_sequence, template_chain_id, mapping_offset
# Try if there is an exact match in the (sub)sequence only.
for chain_id, chain_sequence in mmcif_object.chain_to_seqres.items():
if chain_sequence and (template_sequence in chain_sequence):
logging.info("Found a sequence-only match %s_%s.", pdb_id, chain_id)
mapping_offset = chain_sequence.find(template_sequence)
return chain_sequence, chain_id, mapping_offset
# Return a chain sequence that fuzzy matches (X = wildcard) the template.
# Make parentheses unnamed groups (?:_) to avoid the 100 named groups limit.
regex = ["." if aa == "X" else "(?:%s|X)" % aa for aa in template_sequence]
regex = re.compile("".join(regex))
for chain_id, chain_sequence in mmcif_object.chain_to_seqres.items():
match = re.search(regex, chain_sequence)
if match:
logging.info("Found a fuzzy sequence-only match %s_%s.", pdb_id, chain_id)
mapping_offset = match.start()
return chain_sequence, chain_id, mapping_offset
# No hits, raise an error.
raise SequenceNotInTemplateError(
"Could not find the template sequence in %s_%s. Template sequence: %s, "
"chain_to_seqres: %s"
% (
pdb_id,
template_chain_id,
template_sequence,
mmcif_object.chain_to_seqres,
)
)
def _realign_pdb_template_to_query(
old_template_sequence: str,
template_chain_id: str,
mmcif_object: mmcif_parsing.MmcifObject,
old_mapping: Mapping[int, int],
kalign_binary_path: str,
) -> Tuple[str, Mapping[int, int]]:
"""Aligns template from the mmcif_object to the query.
In case PDB70 contains a different version of the template sequence, we need
to perform a realignment to the actual sequence that is in the mmCIF file.
This method performs such realignment, but returns the new sequence and
mapping only if the sequence in the mmCIF file is 90% identical to the old
sequence.
Note that the old_template_sequence comes from the hit, and contains only that
part of the chain that matches with the query while the new_template_sequence
is the full chain.
Args:
old_template_sequence: The template sequence that was returned by the PDB
template search (typically done using HHSearch).
template_chain_id: The template chain id was returned by the PDB template
search (typically done using HHSearch). This is used to find the right
chain in the mmcif_object chain_to_seqres mapping.
mmcif_object: A mmcif_object which holds the actual template data.
old_mapping: A mapping from the query sequence to the template sequence.
This mapping will be used to compute the new mapping from the query
sequence to the actual mmcif_object template sequence by aligning the
old_template_sequence and the actual template sequence.
kalign_binary_path: The path to a kalign executable.
Returns:
A tuple (new_template_sequence, new_query_to_template_mapping) where:
* new_template_sequence is the actual template sequence that was found in
the mmcif_object.
* new_query_to_template_mapping is the new mapping from the query to the
actual template found in the mmcif_object.
Raises:
QueryToTemplateAlignError:
* If there was an error thrown by the alignment tool.
* Or if the actual template sequence differs by more than 10% from the
old_template_sequence.
"""
aligner = kalign.Kalign(binary_path=kalign_binary_path)
new_template_sequence = mmcif_object.chain_to_seqres.get(template_chain_id, "")
# Sometimes the template chain id is unknown. But if there is only a single
# sequence within the mmcif_object, it is safe to assume it is that one.
if not new_template_sequence:
if len(mmcif_object.chain_to_seqres) == 1:
logging.info(
"Could not find %s in %s, but there is only 1 sequence, so "
"using that one.",
template_chain_id,
mmcif_object.file_id,
)
new_template_sequence = list(mmcif_object.chain_to_seqres.values())[0]
else:
raise QueryToTemplateAlignError(
f"Could not find chain {template_chain_id} in {mmcif_object.file_id}. "
"If there are no mmCIF parsing errors, it is possible it was not a "
"protein chain."
)
try:
parsed_a3m = parsers.parse_a3m(
aligner.align([old_template_sequence, new_template_sequence])
)
old_aligned_template, new_aligned_template = parsed_a3m.sequences
except Exception as e:
raise QueryToTemplateAlignError(
"Could not align old template %s to template %s (%s_%s). Error: %s"
% (
old_template_sequence,
new_template_sequence,
mmcif_object.file_id,
template_chain_id,
str(e),
)
)
logging.info(
"Old aligned template: %s\nNew aligned template: %s",
old_aligned_template,
new_aligned_template,
)
old_to_new_template_mapping = {}
old_template_index = -1
new_template_index = -1
num_same = 0
for old_template_aa, new_template_aa in zip(
old_aligned_template, new_aligned_template
):
if old_template_aa != "-":
old_template_index += 1
if new_template_aa != "-":
new_template_index += 1
if old_template_aa != "-" and new_template_aa != "-":
old_to_new_template_mapping[old_template_index] = new_template_index
if old_template_aa == new_template_aa:
num_same += 1
# Require at least 90 % sequence identity wrt to the shorter of the sequences.
if (
float(num_same) / min(len(old_template_sequence), len(new_template_sequence))
< 0.9
):
raise QueryToTemplateAlignError(
"Insufficient similarity of the sequence in the database: %s to the "
"actual sequence in the mmCIF file %s_%s: %s. We require at least "
"90 %% similarity wrt to the shorter of the sequences. This is not a "
"problem unless you think this is a template that should be included."
% (
old_template_sequence,
mmcif_object.file_id,
template_chain_id,
new_template_sequence,
)
)
new_query_to_template_mapping = {}
for query_index, old_template_index in old_mapping.items():
new_query_to_template_mapping[query_index] = old_to_new_template_mapping.get(
old_template_index, -1
)
new_template_sequence = new_template_sequence.replace("-", "")
return new_template_sequence, new_query_to_template_mapping
def _check_residue_distances(
all_positions: np.ndarray,
all_positions_mask: np.ndarray,
max_ca_ca_distance: float,
):
"""Checks if the distance between unmasked neighbor residues is ok."""
ca_position = residue_constants.atom_order["CA"]
prev_is_unmasked = False
prev_calpha = None
for i, (coords, mask) in enumerate(zip(all_positions, all_positions_mask)):
this_is_unmasked = bool(mask[ca_position])
if this_is_unmasked:
this_calpha = coords[ca_position]
if prev_is_unmasked:
distance = np.linalg.norm(this_calpha - prev_calpha)
if distance > max_ca_ca_distance:
raise CaDistanceError(
"The distance between residues %d and %d is %f > limit %f."
% (i, i + 1, distance, max_ca_ca_distance)
)
prev_calpha = this_calpha
prev_is_unmasked = this_is_unmasked
def _get_atom_positions(
mmcif_object: mmcif_parsing.MmcifObject,
auth_chain_id: str,
max_ca_ca_distance: float,
_zero_center_positions: bool = False,
) -> Tuple[np.ndarray, np.ndarray]:
"""Gets atom positions and mask from a list of Biopython Residues."""
coords_with_mask = mmcif_parsing.get_atom_coords(
mmcif_object=mmcif_object,
chain_id=auth_chain_id,
_zero_center_positions=_zero_center_positions,
)
all_atom_positions, all_atom_mask = coords_with_mask
_check_residue_distances(all_atom_positions, all_atom_mask, max_ca_ca_distance)
return all_atom_positions, all_atom_mask
@dataclasses.dataclass(frozen=True)
class PrefilterResult:
valid: bool
error: Optional[str]
warning: Optional[str]
@dataclasses.dataclass(frozen=True)
class SingleHitResult:
features: Optional[Mapping[str, Any]]
error: Optional[str]
warning: Optional[str]
def _prefilter_hit(
query_sequence: str,
hit: parsers.TemplateHit,
max_template_date: datetime.datetime,
release_dates: Mapping[str, datetime.datetime],
obsolete_pdbs: Mapping[str, str],
strict_error_check: bool = False,
):
# Fail hard if we can't get the PDB ID and chain name from the hit.
hit_pdb_code, hit_chain_id = _get_pdb_id_and_chain(hit)
if hit_pdb_code not in release_dates:
if hit_pdb_code in obsolete_pdbs:
hit_pdb_code = obsolete_pdbs[hit_pdb_code]
# Pass hit_pdb_code since it might have changed due to the pdb being
# obsolete.
try:
_assess_hhsearch_hit(
hit=hit,
hit_pdb_code=hit_pdb_code,
query_sequence=query_sequence,
release_dates=release_dates,
release_date_cutoff=max_template_date,
)
except PrefilterError as e:
hit_name = f"{hit_pdb_code}_{hit_chain_id}"
msg = f"hit {hit_name} did not pass prefilter: {str(e)}"
logging.info(msg)
if strict_error_check and isinstance(e, (DateError, DuplicateError)):
# In strict mode we treat some prefilter cases as errors.
return PrefilterResult(valid=False, error=msg, warning=None)
return PrefilterResult(valid=False, error=None, warning=None)
return PrefilterResult(valid=True, error=None, warning=None)
@functools.lru_cache(16, typed=False)
def _read_file(path):
with open(path, "r") as f:
file_data = f.read()
return file_data
@dataclasses.dataclass(frozen=True)
class TemplateSearchResult:
features: Mapping[str, Any]
errors: Sequence[str]
warnings: Sequence[str]