FoldMark / protenix /openfold_local /model /triangular_multiplicative_update.py
Zaixi's picture
Add large file
89c0b51
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partialmethod
from typing import Optional
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
from protenix.openfold_local.model.primitives import Linear, LayerNorm
from protenix.openfold_local.utils.precision_utils import is_fp16_enabled
from protenix.openfold_local.utils.tensor_utils import add, permute_final_dims
class BaseTriangleMultiplicativeUpdate(nn.Module, ABC):
"""
Implements Algorithms 11 and 12.
"""
@abstractmethod
def __init__(self, c_z, c_hidden, _outgoing):
"""
Args:
c_z:
Input channel dimension
c:
Hidden channel dimension
"""
super(BaseTriangleMultiplicativeUpdate, self).__init__()
self.c_z = c_z
self.c_hidden = c_hidden
self._outgoing = _outgoing
self.linear_g = Linear(self.c_z, self.c_z, init="gating")
self.linear_z = Linear(self.c_hidden, self.c_z, init="final")
self.layer_norm_in = LayerNorm(self.c_z)
self.layer_norm_out = LayerNorm(self.c_hidden)
self.sigmoid = nn.Sigmoid()
def _combine_projections(
self,
a: torch.Tensor,
b: torch.Tensor,
_inplace_chunk_size: Optional[int] = None,
) -> torch.Tensor:
if self._outgoing:
a = permute_final_dims(a, (2, 0, 1))
b = permute_final_dims(b, (2, 1, 0))
else:
a = permute_final_dims(a, (2, 1, 0))
b = permute_final_dims(b, (2, 0, 1))
if _inplace_chunk_size is not None:
# To be replaced by torch vmap
for i in range(0, a.shape[-3], _inplace_chunk_size):
a_chunk = a[..., i : i + _inplace_chunk_size, :, :]
b_chunk = b[..., i : i + _inplace_chunk_size, :, :]
a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul(
a_chunk,
b_chunk,
)
p = a
else:
p = torch.matmul(a, b)
return permute_final_dims(p, (1, 2, 0))
@abstractmethod
def forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_safe: bool = False,
_add_with_inplace: bool = False,
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
pass
class TriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate):
"""
Implements Algorithms 11 and 12.
"""
def __init__(self, c_z, c_hidden, _outgoing=True):
"""
Args:
c_z:
Input channel dimension
c:
Hidden channel dimension
"""
super(TriangleMultiplicativeUpdate, self).__init__(
c_z=c_z, c_hidden=c_hidden, _outgoing=_outgoing
)
self.linear_a_p = Linear(self.c_z, self.c_hidden)
self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating")
self.linear_b_p = Linear(self.c_z, self.c_hidden)
self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating")
def _inference_forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_chunk_size: Optional[int] = None,
with_add: bool = True,
):
"""
Args:
z:
A [*, N, N, C_z] pair representation
mask:
A [*, N, N] pair mask
inplace_chunk_size:
Size of chunks used in the main computation. Increase to trade
memory for speed.
with_add:
If True, z is overwritten with (z + update). Otherwise, it is
overwritten with (update).
Returns:
A reference to the overwritten z
More memory-efficient, inference-only version of the forward function.
Uses in-place operations, fusion of the addition that happens after
this module in the Evoformer, a smidge of recomputation, and
a cache of overwritten values to lower peak memory consumption of this
module from 5x the size of the input tensor z to 2.5x its size. Useful
for inference on extremely long sequences.
It works as follows. We will make reference to variables used in the
default forward implementation below. Naively, triangle multiplication
attention requires the manifestation of 5 tensors the size of z:
1) z, the "square" input tensor, 2) a, the first projection of z,
3) b, the second projection of b, 4) g, a z-sized mask, and 5) a
z-sized tensor for intermediate computations. For large N, this is
prohibitively expensive; for N=4000, for example, z is more than 8GB
alone. To avoid this problem, we compute b, g, and all intermediate
tensors in small chunks, noting that the chunks required to compute a
chunk of the output depend only on the tensor a and corresponding
vertical and horizontal chunks of z. This suggests an algorithm that
loops over pairs of chunks of z: hereafter "columns" and "rows" of
z, even though each "column" and "row" in fact contains
inplace_chunk_size contiguous true columns and rows of z. Writing
output chunks to a new tensor would bring total memory consumption
down to 3x the size of z. However, more memory can be saved by writing
output chunks directly to z in-place. WLOG, we choose to write output
chunks vertically, overwriting the ith "column" of z at the end of
the ith iteration of the main loop. Despite this overwriting, the
ith column is always one column ahead of previously overwritten columns
and can be recovered directly from z. After the first iteration,
however, the ith row of z is always at least partially overwritten. For
this reason, we introduce the z-cache, a tensor one-half the size of
z. The z-cache initially contains the left half (2nd and 3rd quadrants)
of z. For 0 < i < N/2, the missing left part of the ith row of z is
recovered from this cache at the beginning of the ith iteration. Once i
exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th
quadrants of z instead. Though the 3rd quadrant of the original z is
entirely overwritten at this point, it can be recovered from the z-cache
itself. Thereafter, the ith row of z can be recovered in its entirety
from the reoriented z-cache. After the final iteration, z has been
completely overwritten and contains the triangular multiplicative
update. If with_add is True, it instead contains the sum of z and the
triangular multiplicative update. In either case, peak memory
consumption is just 2.5x the size of z, disregarding memory used for
chunks and other small variables.
"""
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
def compute_projection_helper(pair, mask, a=True):
if a:
linear_g = self.linear_a_g
linear_p = self.linear_a_p
else:
linear_g = self.linear_b_g
linear_p = self.linear_b_p
pair = self.layer_norm_in(pair)
p = linear_g(pair)
p.sigmoid_()
p *= linear_p(pair)
p *= mask
p = permute_final_dims(p, (2, 0, 1))
return p
def compute_projection(pair, mask, a=True, chunked=True):
need_transpose = self._outgoing ^ a
if not chunked:
p = compute_projection_helper(pair, mask, a)
if need_transpose:
p = p.transpose(-1, -2)
else:
# This computation is chunked so as not to exceed our 2.5x
# budget with a large intermediate tensor
linear_g = self.linear_a_g if a else self.linear_b_g
c = linear_g.bias.shape[-1]
out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1]
p = pair.new_zeros(out_shape)
for i in range(0, pair.shape[-3], inplace_chunk_size):
pair_chunk = pair[..., i : i + inplace_chunk_size, :, :]
mask_chunk = mask[..., i : i + inplace_chunk_size, :, :]
pair_chunk = compute_projection_helper(
pair[..., i : i + inplace_chunk_size, :, :],
mask[..., i : i + inplace_chunk_size, :, :],
a,
)
if need_transpose:
pair_chunk = pair_chunk.transpose(-1, -2)
p[..., i : i + inplace_chunk_size] = pair_chunk
else:
p[..., i : i + inplace_chunk_size, :] = pair_chunk
del pair_chunk
return p
# We start by fully manifesting a. In addition to the input, this
# brings total memory consumption to 2x z (disregarding size of chunks)
# [*, N, N, c]
a = compute_projection(z, mask, True, chunked=True)
if inplace_chunk_size is not None:
n = a.shape[-1]
half_n = n // 2 + n % 2
row_dim = -3
col_dim = -2
b_chunk_dim = row_dim if self._outgoing else col_dim
def empty_slicer(t):
return [slice(None) for _ in t.shape]
def slice_tensor(t, start, end, dim):
# Slices start:end from the dim dimension of t
s = empty_slicer(t)
s[dim] = slice(start, end)
return t[s]
def flip_z_cache_(z_cache, z):
# "Reorient" the z_cache (see below), filling it with quadrants
# 3---recovered from the z_cache---and 4---recovered from z---
# of the input tensor z.
quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim)
z_cache = z_cache.transpose(row_dim, col_dim)
# If n is odd, we need to shrink the z_cache by one row
z_cache = z_cache[..., : (n // 2), :, :]
# Move the 3rd quadrant of z into the
first_half_slicer = empty_slicer(z_cache)
first_half_slicer[col_dim] = slice(0, half_n)
z_cache[first_half_slicer] = quadrant_3
# Get the fourth quadrant of z
quadrant_4 = slice_tensor(z, half_n, None, row_dim)
quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim)
# Insert said quadrant into the rotated z-cache
quadrant_3_slicer = empty_slicer(z_cache)
quadrant_3_slicer[col_dim] = slice(half_n, None)
z_cache[quadrant_3_slicer] = quadrant_4
return z_cache
# Initialize the z cache to the left half of z.
z_cache_shape = list(z.shape)
z_cache_shape[col_dim] = half_n
z_cache = z.new_zeros(z_cache_shape)
z_cache_slicer = empty_slicer(z_cache)
z_cache_slicer[col_dim] = slice(0, half_n)
z_cache.copy_(z[z_cache_slicer])
z_cache_rotated = False
# We need to reorient the z-cache at the halfway point, and we
# don't want a single chunk to straddle that point. We contract one
# of the chunks in the middle to address that problem.
i_range = list(range(0, half_n, inplace_chunk_size))
initial_offsets = [
i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])
]
after_half = list(range(half_n, n, inplace_chunk_size))
after_half_offsets = [inplace_chunk_size for _ in after_half]
combined_range_with_offsets = zip(
i_range + after_half, initial_offsets + after_half_offsets
)
for i, offset in combined_range_with_offsets:
if not z_cache_rotated and i >= half_n:
z_cache = flip_z_cache_(z_cache, z)
z_cache_rotated = True
z_chunk_b = slice_tensor(
z,
i,
i + offset,
b_chunk_dim,
)
mask_chunk = slice_tensor(
mask,
i,
i + offset,
b_chunk_dim,
)
z_chunk_b = z_chunk_b.clone()
if b_chunk_dim == col_dim:
z_chunk_b = slice_tensor(z, i, i + offset, col_dim)
else: # b_chunk_dim == row_dim
# In this case, the b-dimension (b_chunk_dim) is partially
# overwritten at the end of each iteration. We need to
# restore the missing component from the z-cache.
if not z_cache_rotated:
z_chunk_slicer = empty_slicer(z_chunk_b)
z_chunk_slicer[col_dim] = slice(0, half_n)
z_chunk_b[z_chunk_slicer] = slice_tensor(
z_cache,
i,
i + offset,
row_dim,
)
else:
z_cache_offset = i - half_n
z_chunk_b = slice_tensor(
z_cache, z_cache_offset, z_cache_offset + offset, row_dim
)
b_chunk = compute_projection(
z_chunk_b, mask_chunk, a=False, chunked=False
)
del z_chunk_b
x_chunk = torch.matmul(
a,
b_chunk,
)
x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
x_chunk = self.layer_norm_out(x_chunk)
x_chunk = self.linear_z(x_chunk)
# The g dimension (col_dim) is parallel to and ahead of the
# overwrites in z. We can extract the g chunk normally.
z_chunk_g = slice_tensor(z, i, i + offset, col_dim)
g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g))
g_chunk.sigmoid_()
del z_chunk_g
x_chunk *= g_chunk
# Write the columns into z in-place
z_slicer = empty_slicer(z)
z_slicer[col_dim] = slice(i, i + offset)
if with_add:
z[z_slicer] += x_chunk
else:
z[z_slicer] = x_chunk
else:
b = compute_projection(z, mask, False, False)
x = torch.matmul(a, b)
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.linear_g(z)
g.sigmoid_()
x *= g
if with_add:
z += x
else:
z = x
return z
def forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_safe: bool = False,
_add_with_inplace: bool = False,
_inplace_chunk_size: Optional[int] = 256,
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
if inplace_safe:
x = self._inference_forward(
z,
mask,
inplace_chunk_size=_inplace_chunk_size,
with_add=_add_with_inplace,
)
return x
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
z = self.layer_norm_in(z)
a = mask
a = a * self.sigmoid(self.linear_a_g(z))
a = a * self.linear_a_p(z)
b = mask
b = b * self.sigmoid(self.linear_b_g(z))
b = b * self.linear_b_p(z)
# Prevents overflow of torch.matmul in combine projections in
# reduced-precision modes
a_std = a.std()
b_std = b.std()
if is_fp16_enabled() and a_std != 0.0 and b_std != 0.0:
a = a / a.std()
b = b / b.std()
if is_fp16_enabled():
with torch.cuda.amp.autocast(enabled=False):
x = self._combine_projections(a.float(), b.float())
else:
x = self._combine_projections(a, b)
del a, b
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.sigmoid(self.linear_g(z))
x = x * g
return x
class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate):
"""
Implements Algorithm 11.
"""
__init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=True)
class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate):
"""
Implements Algorithm 12.
"""
__init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=False)
class FusedTriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate):
"""
Implements Algorithms 11 and 12.
"""
def __init__(self, c_z, c_hidden, _outgoing=True):
"""
Args:
c_z:
Input channel dimension
c:
Hidden channel dimension
"""
super(FusedTriangleMultiplicativeUpdate, self).__init__(
c_z=c_z, c_hidden=c_hidden, _outgoing=_outgoing
)
self.linear_ab_p = Linear(self.c_z, self.c_hidden * 2)
self.linear_ab_g = Linear(self.c_z, self.c_hidden * 2, init="gating")
def _inference_forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
_inplace_chunk_size: Optional[int] = None,
with_add: bool = True,
):
"""
Args:
z:
A [*, N, N, C_z] pair representation
mask:
A [*, N, N] pair mask
with_add:
If True, z is overwritten with (z + update). Otherwise, it is
overwritten with (update).
Returns:
A reference to the overwritten z
"""
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
def compute_projection_helper(pair, mask):
p = self.linear_ab_g(pair)
p.sigmoid_()
p *= self.linear_ab_p(pair)
p *= mask
return p
def compute_projection(pair, mask):
p = compute_projection_helper(pair, mask)
left = p[..., : self.c_hidden]
right = p[..., self.c_hidden :]
return left, right
z_norm_in = self.layer_norm_in(z)
a, b = compute_projection(z_norm_in, mask)
x = self._combine_projections(a, b, _inplace_chunk_size=_inplace_chunk_size)
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.linear_g(z_norm_in)
g.sigmoid_()
x *= g
if with_add:
z += x
else:
z = x
return z
def forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_safe: bool = False,
_add_with_inplace: bool = False,
_inplace_chunk_size: Optional[int] = 256,
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
if inplace_safe:
x = self._inference_forward(
z,
mask,
_inplace_chunk_size=_inplace_chunk_size,
with_add=_add_with_inplace,
)
return x
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
z = self.layer_norm_in(z)
ab = mask
ab = ab * self.sigmoid(self.linear_ab_g(z))
ab = ab * self.linear_ab_p(z)
a = ab[..., : self.c_hidden]
b = ab[..., self.c_hidden :]
# Prevents overflow of torch.matmul in combine projections in
# reduced-precision modes
a_std = a.std()
b_std = b.std()
if is_fp16_enabled() and a_std != 0.0 and b_std != 0.0:
a = a / a.std()
b = b / b.std()
if is_fp16_enabled():
with torch.cuda.amp.autocast(enabled=False):
x = self._combine_projections(a.float(), b.float())
else:
x = self._combine_projections(a, b)
del a, b
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.sigmoid(self.linear_g(z))
x = x * g
return x
class FusedTriangleMultiplicationOutgoing(FusedTriangleMultiplicativeUpdate):
"""
Implements Algorithm 11.
"""
__init__ = partialmethod(FusedTriangleMultiplicativeUpdate.__init__, _outgoing=True)
class FusedTriangleMultiplicationIncoming(FusedTriangleMultiplicativeUpdate):
"""
Implements Algorithm 12.
"""
__init__ = partialmethod(
FusedTriangleMultiplicativeUpdate.__init__, _outgoing=False
)