|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import time |
|
|
|
import torch |
|
|
|
|
|
class Checker: |
|
|
|
@staticmethod |
|
def is_permutation(x: torch.Tensor): |
|
""" |
|
Checks if the input tensor `x` is a permutation of integers from 0 to N-1. |
|
|
|
Args: |
|
x (torch.Tensor): A 1D tensor of size [N]. |
|
""" |
|
assert x.dim() == 1 |
|
N = x.size(0) |
|
assert torch.equal(torch.sort(x)[0], torch.arange(N, device=x.device)) |
|
|
|
@staticmethod |
|
def are_permutations(x: torch.Tensor, dim=-1): |
|
""" |
|
Checks if slices along the specified dimension in `x` are permutations of integers from 0 to N-1. |
|
|
|
Args: |
|
x (torch.Tensor): A tensor with any number of dimensions, containing slices of size N along `dim`. |
|
dim (int, optional): The dimension along which to check for permutations. Defaults to -1. |
|
""" |
|
assert x.dim() > 0 |
|
|
|
N = x.size(dim) |
|
|
|
x = x.transpose(dim, -1).contiguous() |
|
x = x.reshape(-1, N) |
|
expected = torch.arange(N, device=x.device) |
|
for i in range(x.size(0)): |
|
Checker.is_permutation(x[i]) |
|
|
|
@staticmethod |
|
def contains_identity(x: torch.Tensor, dim=-1): |
|
""" |
|
Check if x contains the identity permutation |
|
|
|
Args: |
|
x (torch.Tensor): A tensor with any number of dimensions, containing slices of size N along `dim`. |
|
dim (int, optional): The dimension along which to check for permutations. Defaults to -1. |
|
""" |
|
assert x.dim() > 0 |
|
|
|
N = x.size(dim) |
|
|
|
x = x.transpose(dim, -1).contiguous() |
|
x = x.reshape(-1, N) |
|
expected = torch.arange(N, device=x.device).unsqueeze(dim=0) |
|
assert (x == expected).all(dim=-1).any() |
|
|
|
@staticmethod |
|
def not_contain_identity(x: torch.Tensor, dim=-1): |
|
""" |
|
Check if x does not contain the identity permutation |
|
|
|
Args: |
|
x (torch.Tensor): A tensor with any number of dimensions, containing slices of size N along `dim`. |
|
dim (int, optional): The dimension along which to check for permutations. Defaults to -1. |
|
""" |
|
assert x.dim() > 0 |
|
|
|
N = x.size(dim) |
|
|
|
x = x.transpose(dim, -1).contiguous() |
|
x = x.reshape(-1, N) |
|
expected = torch.arange(N, device=x.device).unsqueeze(dim=0) |
|
assert not (x == expected).all(dim=-1).any() |
|
|
|
@staticmethod |
|
def batch_permute(perm: torch.Tensor, x: torch.Tensor, x_permuted: torch.Tensor): |
|
""" |
|
Args: |
|
perm (torch.Tensor): |
|
[..., N] |
|
x (torch.Tensor): |
|
[N, batch_dims_x] |
|
x_permuted (torch.Tensor): |
|
[..., N, batch_dims_x] |
|
""" |
|
batch_shape = perm.shape[:-1] |
|
N = perm.size(-1) |
|
assert x.size(0) == N |
|
perm = perm.view(-1, N) |
|
permuted_x = [x[perm[i]] for i in range(len(perm))] |
|
permuted_x = torch.stack(permuted_x, dim=0) |
|
target_shape = batch_shape + (N,) + x.shape[1:] |
|
assert torch.allclose(permuted_x.reshape(target_shape), x_permuted) |
|
|
|
|
|
def save_permutation_error(data, error_dir: str = None, max_cases: int = 50): |
|
""" |
|
Saves the permutation error data to a specified directory. |
|
|
|
Args: |
|
data: The data to be saved. |
|
error_dir (str): The directory where the error data should be saved. |
|
max_cases (int): The maximum number of error cases to save. |
|
|
|
Raises: |
|
Exception: If an error occurs while saving the data, the exception is caught and printed. |
|
""" |
|
if error_dir is None: |
|
return |
|
|
|
|
|
os.makedirs(error_dir, exist_ok=True) |
|
|
|
if len(os.listdir(error_dir)) >= max_cases: |
|
|
|
return |
|
|
|
filename = "T_" + time.strftime("%Y%m%d_%H%M%S") + ".pt" |
|
fpath = os.path.join(error_dir, filename) |
|
if not os.path.exists(fpath): |
|
try: |
|
torch.save(data, fpath) |
|
except Exception as e: |
|
print(f"Exception occurrs in save_permutation_error: {e}") |
|
|